Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 26357 by abdo imad last updated on 24/Dec/17

find the value of ∫_0 ^(π/2)  ln(cosθ)dθ  and   ∫_0 ^(π/2)  ln(sinθ)dθ   .

findthevalueof0π2ln(cosθ)dθand0π2ln(sinθ)dθ.

Commented by prakash jain last updated on 24/Dec/17

∫_0 ^(π/2) ln (cos x)dx  u=(π/2)−x  du=−dx  I=∫_0 ^(π/2) ln (sin x)dx=−∫_(π/2) ^0 ln (cos u)du       =∫_0 ^(π/2) ln (cos x)dx  2I=∫_0 ^(π/2) ln (cos xsin x)dx  =∫_0 ^(π/2) ln sin 2xdx−∫_0 ^(π/2) ln 2dx  =I−(π/2)ln 2  I=−(π/2)ln 2

0π/2ln(cosx)dxu=π2xdu=dxI=0π/2ln(sinx)dx=π/20ln(cosu)du=0π/2ln(cosx)dx2I=0π/2ln(cosxsinx)dx=0π/2lnsin2xdx0π/2ln2dx=Iπ2ln2I=π2ln2

Answered by prakash jain last updated on 24/Dec/17

−(π/2)ln 2

π2ln2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com