All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 40143 by maxmathsup by imad last updated on 16/Jul/18
findthevalueof∫0π4tan(x)dx2cos(x)+2sin2(x)
Commented by math khazana by abdo last updated on 22/Jul/18
I=∫0π4sinxcosx(2cosx+2(1−cos2x)dxchangementcosx=tgiveI=∫1121−t2t{2t+2−2t2}−dt1−t2=∫121dtt{−2t2+2t+2}letdecomposeF(t)=1t{−2t2+2t+2}Δ=2−4(−2)2=2+16=18⇒t1=−2+32−2=2−322=−2t2=−2−32−2=2+322=22F(t)=1−2t(t−t1)(t−t2)=at+bt−t1+ct−t2a=limt→0tF(t)=12b=limt→t1(t−t1)F(t)=−12t1(t1−t2)=−1−22(−32)=112c=limt→t2(t−t2)F(t)=−12t2(t2−t1)=−142(32)=−124⇒F(t)=12t+112(t−t1)−124(t−t2)⇒∫121F(t)dt=12∫121dtt+112∫121dtt+2−124∫121dtt−22=12[ln∣t∣]121+112[ln∣t+2∣]121−124[ln∣t−22∣]121=ln(2)2+112{ln(1+2)−ln(2+12)}−124{ln(22−1)−ln(22−12)}.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com