Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 40143 by maxmathsup by imad last updated on 16/Jul/18

find the value of  ∫_0 ^(π/4)      ((tan(x)dx)/((√2)cos(x) +2sin^2 (x)))

findthevalueof0π4tan(x)dx2cos(x)+2sin2(x)

Commented by math khazana by abdo last updated on 22/Jul/18

I = ∫_0 ^(π/4)        ((sinx)/(cosx((√2)cosx +2(1−cos^2 x)))dx  changement cosx =t give  I = ∫_1 ^(1/(√2))       ((√(1−t^2 ))/(t{(√2)t +2−2t^2 })) ((−dt)/(√(1−t^2 )))  = ∫_(1/(√2)) ^1      (dt/(t{−2t^2  +(√2)t +2})) let decompose  F(t) = (1/(t{ −2t^2  +(√2) t+2}))  Δ^ =2−4(−2)2=2 +16 =18  ⇒  t_1 =((−(√2) +3(√2))/(−2)) =(((√2) −3(√2))/2)=−(√2)  t_2 =((−(√2) −3(√2))/(−2)) =(((√2)+3(√2))/2)=2(√2)  F(t) = (1/(−2t(t−t_1 )(t−t_2 ))) =(a/t) +(b/(t−t_1 )) +(c/(t−t_2 ))  a=lim_(t→0) tF(t)=(1/2)  b =lim_(t→t_1 )    (t−t_1 )F(t) = ((−1)/(2t_1 (t_1 −t_2 )))  = ((−1)/(−2(√2)(−3(√2)))) = (1/(12))  c = lim_(t→t_2 )    (t−t_2 )F(t)= ((−1)/(2t_2 (t_2 −t_1 ))) =((−1)/(4(√2)(3(√2))))  =((−1)/(24)) ⇒  F(t) = (1/(2t))  +(1/(12(t−t_1 ))) −(1/(24(t−t_2 ))) ⇒  ∫_(1/(√2)) ^1 F(t)dt =(1/2) ∫_(1/(√2)) ^1  (dt/t) +(1/(12)) ∫_(1/(√2)) ^1   (dt/(t+(√2))) −(1/(24)) ∫_(1/(√2)) ^1  (dt/(t−2(√2)))  =(1/2)[ln∣t∣]_(1/(√2)) ^1   +(1/(12))[ln∣t+(√2)∣]_(1/(√2)) ^1  −(1/(24))[ln∣t−2(√2)∣]_(1/(√2)) ^1   =((ln((√(2))))/2) +(1/(12)){ln(1+(√2))−ln((√2) +(1/(√2)))}  −(1/(24)){ln(2(√2) −1)−ln(2(√2) −(1/(√2)))} .

I=0π4sinxcosx(2cosx+2(1cos2x)dxchangementcosx=tgiveI=1121t2t{2t+22t2}dt1t2=121dtt{2t2+2t+2}letdecomposeF(t)=1t{2t2+2t+2}Δ=24(2)2=2+16=18t1=2+322=2322=2t2=2322=2+322=22F(t)=12t(tt1)(tt2)=at+btt1+ctt2a=limt0tF(t)=12b=limtt1(tt1)F(t)=12t1(t1t2)=122(32)=112c=limtt2(tt2)F(t)=12t2(t2t1)=142(32)=124F(t)=12t+112(tt1)124(tt2)121F(t)dt=12121dtt+112121dtt+2124121dtt22=12[lnt]121+112[lnt+2]121124[lnt22]121=ln(2)2+112{ln(1+2)ln(2+12)}124{ln(221)ln(2212)}.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com