All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 36188 by prof Abdo imad last updated on 30/May/18
findthevalueof∫0∞t1+t2dt
Commented by maxmathsup by imad last updated on 15/Aug/18
letI=∫0∞t1+t2dtchangementt=xgiveI=∫0∞x1+x4(2x)dx=2∫0∞x21+x4dx=∫−∞+∞x2x4+1dxletconsiderφ(z)=z2z4+1wehaveφ(z)=z2(z2−i)(z2+i)=z2(z−i)(z+i)(z−−i)(z+−i)=z2(z−eiπ4)(z+e−iπ4)(z−e−iπ4)(z+e−iπ4)thepolesofφare+−eiπ4and+−e−iπ4∫−∞+∞φ(z)dz=2iπ{Res(φ,eiπ4)+Res(φ,−e−iπ4)}Res(φ,zi)=zi24zi3=zi3−4=−14zi3⇒Res(φ,eiπ4)=−14ei3π4Res(φ,−e−iπ4)=(−e−iπ4)3−4=14e−i3π4∫−∞+∞φ(z)dz=2iπ4{−ei3π4+e−i3π4}=−iπ2(ei3π4−e−i3π4)=−iπ2(2isin(3π4))=π22⇒I=π2.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com