Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 36188 by prof Abdo imad last updated on 30/May/18

find the value of  ∫_0 ^∞   ((√t)/(1+t^2 ))dt

findthevalueof0t1+t2dt

Commented by maxmathsup by imad last updated on 15/Aug/18

let I = ∫_0 ^∞    ((√t)/(1+t^2 )) dt  changement (√t) =x give  I  = ∫_0 ^∞    (x/(1+x^4 ))(2x)dx = 2  ∫_0 ^∞   (x^2 /(1+x^4 )) dx =∫_(−∞) ^(+∞)    (x^2 /(x^4  +1))dx let consider  ϕ(z) =(z^2 /(z^4 +1))  we have ϕ(z) = (z^2 /((z^2 −i)(z^2  +i)))  =(z^2 /((z−(√i))(z+(√i))(z−(√(−i)))(z+(√(−i))))) =(z^2 /((z −e^((iπ)/4) )(z+e^((−iπ)/4) )(z−e^(−((iπ)/4)) )(z+e^(−((iπ)/4)) )))  the poles of ϕ are +^− e^((iπ)/4)   and  +^−  e^(−((iπ)/4))   ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ { Res(ϕ, e^((iπ)/4) ) +Res(ϕ,−e^(−((iπ)/4)) )}  Res(ϕ,z_i ) =(z_i ^2 /(4z_i ^3 )) =(z_i ^3 /(−4)) =−(1/4) z_i ^3  ⇒Res(ϕ,e^((iπ)/4) ) =−(1/4) e^(i((3π)/4))   Res(ϕ,−e^(−((iπ)/4)) ) = (((−e^(−((iπ)/4)) )^3 )/(−4)) =(1/4) e^(−((i3π)/4))   ∫_(−∞) ^(+∞)    ϕ(z)dz =((2iπ)/4){−  e^((i3π)/4)   +e^(−((i3π)/4)) } =−((iπ)/2) ( e^((i3π)/4)  −e^(−((i3π)/4)) )  =−((iπ)/2)(2i sin(((3π)/4))) = ((π(√2))/2)  ⇒ I  = (π/(√2))  .

letI=0t1+t2dtchangementt=xgiveI=0x1+x4(2x)dx=20x21+x4dx=+x2x4+1dxletconsiderφ(z)=z2z4+1wehaveφ(z)=z2(z2i)(z2+i)=z2(zi)(z+i)(zi)(z+i)=z2(zeiπ4)(z+eiπ4)(zeiπ4)(z+eiπ4)thepolesofφare+eiπ4and+eiπ4+φ(z)dz=2iπ{Res(φ,eiπ4)+Res(φ,eiπ4)}Res(φ,zi)=zi24zi3=zi34=14zi3Res(φ,eiπ4)=14ei3π4Res(φ,eiπ4)=(eiπ4)34=14ei3π4+φ(z)dz=2iπ4{ei3π4+ei3π4}=iπ2(ei3π4ei3π4)=iπ2(2isin(3π4))=π22I=π2.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com