Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 45045 by maxmathsup by imad last updated on 07/Oct/18

find the value of  ∫_0 ^∞    (t^3 /(1+e^t ))dt .

findthevalueof0t31+etdt.

Answered by maxmathsup by imad last updated on 09/Oct/18

let A =∫_0 ^∞  (t^3 /(1+e^t )) dt  we have A =∫_0 ^∞  ((t^3 e^(−t) )/(1+e^(−t) ))dt  =∫_0 ^∞  t^3 e^(−t) (Σ_(n=0) ^∞ (−1)^n e^(−nt) )dt=Σ_(n=0) ^∞ (−1)^n  ∫_0 ^∞  t^3  e^(−(n+1)t) dt  changement (n+1)t =x give   A =Σ_(n=0) ^∞  (−1)^n  ∫_0 ^∞ ((x/(n+1)))^3 e^(−x)   (dx/((n+1)))  =Σ_(n=0) ^∞  (((−1)^n )/((n+1)^4 )) ∫_0 ^∞   x^3  e^(−x) dt  let remember that Γ(x)=∫_0 ^∞  t^(x−1) e^(−t) dt (x>0) ⇒  ∫_0 ^∞  x^3  e^(−x)  dx =∫_0 ^∞ x^(4−1) e^(−x) dx =Γ(4) =(4−1)!=3! =6 ⇒  A =6 Σ_(n=0) ^∞   (((−1)^n )/((n+1)^4 )) =6 δ(4) with δ(x)=Σ_(n=1) ^∞  (((−1)^(n−1) )/n^x )   (x>0) let find δ(x)  interms of ξ(x)=Σ_(n=1) ^∞   (1/n^x )  we have δ(x)=−Σ_(n=1) ^∞   (1/((2n)^x )) +Σ_(n=0) ^∞   (1/((2n+1)^x ))  =−2^(−x)  ξ(x) +Σ_(n=0) ^∞   (1/((2n+1)^x )) but ξ(x)=Σ_(n=1) ^∞  (1/((2n)^x )) +Σ_(n=0) ^∞  (1/((2n+1)^x ))  =2^(−x) ξ(x)+Σ_(n=0) ^∞  (1/((2n+1)^x )) ⇒Σ_(n=0) ^∞  (1/((2n+1)^x )) =(1−2^(−x) )ξ(x) ⇒  δ(x) =−2^(−x) ξ(x) +(1−2^(−x) )ξ(x) =(1−2^(1−x) )ξ(x) ⇒  δ(4) =(1−2^(−3) )ξ(4) =(1−(1/8))(π^4 /(90)) =(7/8) (π^4 /(90)) ⇒A =6.(7/8) .(π^4 /(90)) ⇒  =((2.3.7)/(2.4)) .(π^4 /(3.30)) = ((7π^4 )/(120))⇒∫_0 ^∞   (t^3 /(1+e^t )) dt =((7 π^4 )/(120)) ★

letA=0t31+etdtwehaveA=0t3et1+etdt=0t3et(n=0(1)nent)dt=n=0(1)n0t3e(n+1)tdtchangement(n+1)t=xgiveA=n=0(1)n0(xn+1)3exdx(n+1)=n=0(1)n(n+1)40x3exdtletrememberthatΓ(x)=0tx1etdt(x>0)0x3exdx=0x41exdx=Γ(4)=(41)!=3!=6A=6n=0(1)n(n+1)4=6δ(4)withδ(x)=n=1(1)n1nx(x>0)letfindδ(x)intermsofξ(x)=n=11nxwehaveδ(x)=n=11(2n)x+n=01(2n+1)x=2xξ(x)+n=01(2n+1)xbutξ(x)=n=11(2n)x+n=01(2n+1)x=2xξ(x)+n=01(2n+1)xn=01(2n+1)x=(12x)ξ(x)δ(x)=2xξ(x)+(12x)ξ(x)=(121x)ξ(x)δ(4)=(123)ξ(4)=(118)π490=78π490A=6.78.π490=2.3.72.4.π43.30=7π41200t31+etdt=7π4120

Terms of Service

Privacy Policy

Contact: info@tinkutara.com