All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 45045 by maxmathsup by imad last updated on 07/Oct/18
findthevalueof∫0∞t31+etdt.
Answered by maxmathsup by imad last updated on 09/Oct/18
letA=∫0∞t31+etdtwehaveA=∫0∞t3e−t1+e−tdt=∫0∞t3e−t(∑n=0∞(−1)ne−nt)dt=∑n=0∞(−1)n∫0∞t3e−(n+1)tdtchangement(n+1)t=xgiveA=∑n=0∞(−1)n∫0∞(xn+1)3e−xdx(n+1)=∑n=0∞(−1)n(n+1)4∫0∞x3e−xdtletrememberthatΓ(x)=∫0∞tx−1e−tdt(x>0)⇒∫0∞x3e−xdx=∫0∞x4−1e−xdx=Γ(4)=(4−1)!=3!=6⇒A=6∑n=0∞(−1)n(n+1)4=6δ(4)withδ(x)=∑n=1∞(−1)n−1nx(x>0)letfindδ(x)intermsofξ(x)=∑n=1∞1nxwehaveδ(x)=−∑n=1∞1(2n)x+∑n=0∞1(2n+1)x=−2−xξ(x)+∑n=0∞1(2n+1)xbutξ(x)=∑n=1∞1(2n)x+∑n=0∞1(2n+1)x=2−xξ(x)+∑n=0∞1(2n+1)x⇒∑n=0∞1(2n+1)x=(1−2−x)ξ(x)⇒δ(x)=−2−xξ(x)+(1−2−x)ξ(x)=(1−21−x)ξ(x)⇒δ(4)=(1−2−3)ξ(4)=(1−18)π490=78π490⇒A=6.78.π490⇒=2.3.72.4.π43.30=7π4120⇒∫0∞t31+etdt=7π4120★
Terms of Service
Privacy Policy
Contact: info@tinkutara.com