All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 36204 by prof Abdo imad last updated on 30/May/18
findthevalueof∫0∞x2−1x2+1sin(x)xdx
Commented by math khazana by abdo last updated on 17/Aug/18
letI=∫0∞x2−1x2+1sinxxdxwehsve2I=∫−∞+∞x2−1x2+1sinxx?dx=Im(∫−∞+∞x2−1x(x2+1)eixdx)let?considerthecomplexfunctionφ(z)=z2−1z(z2+1)eizthepolesofφare0,iand−i∫−∞+∞φ(z)dz=2iπ{Res(φ,0)+Res(φ,i)}butφ(z)=(z2−1)eizz(z−i)(z+i)⇒Res(φ,0)=limz→0zφ(z)=11=1Res(φ,i)=limz→i(z−i)φ(z)=−2e−1i(2i)=e−1⇒∫−∞+∞φ(z)dz=2iπ{1+e−1}⇒2I=Im(∫−∞+∞φ(z)dz)=2π{1+e−1}⇒I=π+πe.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com