All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 27781 by abdo imad last updated on 14/Jan/18
findthevalueofF(x)=∫0π2ln(1+xsin2t)sin2tdtknowingthat−1<x<1.
Commented by abdo imad last updated on 18/Jan/18
afterverifyingthatFisderivableon]−1,1[F,′(x)=∫0π2sin2tsin2t(1+xsin2t)dt=∫0π2dt1+xsin2t=∫0π2dt1+x1−cos(2t)2=∫0π22dt2+x−xcos(2t)letusethech.2t=θF(x)=∫0πdθ2+x−xcosθthenthech.tan(θ2)=tgiveF(x)=∫0+∝12+x−x1−t21+t22dt1+t2=∫0+∝2dt(2+x)(1+t2)−x+xt2=∫0+∝2dt2+x+(2+2x)t2−x=∫0+∝dt1+(1+x)t2ch.u=1+xt=∫0+∝du1+x(1+u2)=π21+x⇒F(x)=π2∫0xdt1+t+λF(x)=π1+x+λandλ=F(0)−π=−πsoF(x)=π(1+x−1).
Terms of Service
Privacy Policy
Contact: info@tinkutara.com