All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 40131 by maxmathsup by imad last updated on 16/Jul/18
findthevalueofI=∫011+x41+x6dx
Answered by maxmathsup by imad last updated on 24/Jul/18
wehave∫01dx1+x6=x=1t∫1+∞11+1t6dtt2=∫1+∞dtt2+1t4=∫1+∞t41+t6dt=∫0∞t41+t6dt−∫01t41+t6dt⇒∫011+x41+x6dx=∫0∞x41+x6dx=x=u16∫0∞u461+u16u16−1du=16∫0∞u23+16−11+udu=16∫0∞u56−11+udu=16πsin(5π6)=π6sin(π−π6)=π6sin(π6)=π6.12⇒I=π3.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com