All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 35628 by abdo mathsup 649 cc last updated on 21/May/18
findthevalueofI=∫01ln(t)ln(1−t)tdt
Commented by abdo mathsup 649 cc last updated on 24/May/18
wehaveln′(1−t)=−11−t=−∑n=0∞tnfor∣t∣<1⇒ln(1−t)=−∑n=0∞tn+1n+1=−∑n=1∞tnn⇒ln(1−t)t=−∑n=1∞tn−1n⇒I=−∫01{∑n=1∞tn−1n}ln(t)dt=−∑n=1∞1n∫01tn−1ln(t)dtbypartsAn=∫01tn−1ln(t)dt=[1ntnln(t)]01−∫011ntndtt=−1n∫01tn−1dt=−1n2⇒I=∑n=1∞1n3I=ξ(3)theapproximatevalueofξ(3)isknown.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com