Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 36435 by prof Abdo imad last updated on 02/Jun/18

find the value of h(t)=∫_0 ^1 ln(1+tx^2 )  with ∣t∣≤1  2) calculate ∫_0 ^1   ln(1+x^2 )dx  3) calculate ∫_0 ^1 ln(1−x^2 )dx

findthevalueofh(t)=01ln(1+tx2)witht∣⩽12)calculate01ln(1+x2)dx3)calculate01ln(1x2)dx

Commented by abdo.msup.com last updated on 03/Jun/18

another method but easy  ∫_0 ^1  ln(1−x^2 )dx = ∫_0 ^1  ln(1−x)dx +  ∫_0 ^1  ln(1+x)dx but  ∫_0 ^1  ln(1−x)dx =_(1−x=t)  −∫_1 ^0  lnt dt  = ∫_0 ^1  ln(t)dt = [tln(t)]_0 ^1  =0  ∫_0 ^1 ln(1+x)dx =_(1+x=t)  ∫_1 ^2  ln(t)dt  =[ tln(t)]_1 ^2   =2ln(2) so  ∫_0 ^1  ln(1−x^2 )dx =2ln(2) .

anothermethodbuteasy01ln(1x2)dx=01ln(1x)dx+01ln(1+x)dxbut01ln(1x)dx=1x=t10lntdt=01ln(t)dt=[tln(t)]01=001ln(1+x)dx=1+x=t12ln(t)dt=[tln(t)]12=2ln(2)so01ln(1x2)dx=2ln(2).

Commented by abdo.msup.com last updated on 03/Jun/18

  1)we have ∣tx^2 ∣≤1 ⇒ln(1+tx^2 )  =ln(1−(−tx^2 )) =Σ_(n=1) ^∞  (((−1)^(n−1) )/n)(tx^2 )^n   =Σ_(n=1) ^∞  (((−1)^n )/n) t^(n−1)  x^(2n)   ⇒  h(t) = Σ_(n=1) ^∞   (((−1)^(n−1) t^n )/n) ∫_0 ^1   x^(2n) dx  =Σ_(n=1) ^∞     (((−1)^(n−1)  t^n )/(n(2n+1)))  (1/2)h(t) =Σ_(n=1) ^∞   { (1/(2n))−(1/(2n+1))}(−1)^(n−1)  t^n   =(1/2) Σ_(n=1) ^∞  (((−1)^(n−1) )/n) t^n  − Σ_(n=1) ^∞  (((−1)^(n−1) )/(2n+1)) t^n   but  Σ_(n=1) ^∞  (((−1)^(n−1) )/n) t^n  =ln(1+t)  Σ_(n=1) ^∞    (((−1)^(n−1) )/(2n+1)) t^n   =(1/(√t)) Σ_(n=1) ^∞  (((−1)^(n−1) )/(2n+1))((√t))^(2n+1)   =(1/(√t)) w((√t)) with w(x) =Σ_(n=1) ^∞  (((−1)^(n−1) )/(2n+1))x^(2n+1)   w^′ (x) = Σ_(n=1) ^∞  (−1)^(n−1)  x^(2n)   = Σ_(n=0) ^∞   (−1)^n  x^(2n +2) = x^2   (1/(1+x^2 ))  ⇒  w(x) = ∫   (x^2 /(1+x^2 )) dx  +λ  =x   −arctanx +λ  but λ =w(0)=0 ⇒  w(x)=x −arctan(x) and  Σ_(n=1) ^∞   (((−1)^(n−1) )/(2n+1)) t^n  = (1/(√t))w((√t))  =(1/(√t)){ (√t) −arctan((√t)) so  ((h(t))/2) = (1/2)ln(1+t) −1  +((arctan((√t)))/(√t)) ⇒  h(t) =ln(1+t)  +((2arctan((√t)))/(√t)) −2

1)wehavetx2∣⩽1ln(1+tx2)=ln(1(tx2))=n=1(1)n1n(tx2)n=n=1(1)nntn1x2nh(t)=n=1(1)n1tnn01x2ndx=n=1(1)n1tnn(2n+1)12h(t)=n=1{12n12n+1}(1)n1tn=12n=1(1)n1ntnn=1(1)n12n+1tnbutn=1(1)n1ntn=ln(1+t)n=1(1)n12n+1tn=1tn=1(1)n12n+1(t)2n+1=1tw(t)withw(x)=n=1(1)n12n+1x2n+1w(x)=n=1(1)n1x2n=n=0(1)nx2n+2=x211+x2w(x)=x21+x2dx+λ=xarctanx+λbutλ=w(0)=0w(x)=xarctan(x)andn=1(1)n12n+1tn=1tw(t)=1t{tarctan(t)soh(t)2=12ln(1+t)1+arctan(t)th(t)=ln(1+t)+2arctan(t)t2

Commented by abdo.msup.com last updated on 03/Jun/18

we have proved that   ∫_0 ^1 ln(1+tx^2 )dx = ln(1+t) +((2arctan((√t)))/(√t)) −2  for t =1 we get  ∫_0 ^1   ln(1+x^2 )dx =ln(2) + 2 (π/4) −2  =ln(2) +(π/2) −2 .

wehaveprovedthat01ln(1+tx2)dx=ln(1+t)+2arctan(t)t2fort=1weget01ln(1+x2)dx=ln(2)+2π42=ln(2)+π22.

Commented by abdo.msup.com last updated on 03/Jun/18

3) we have ln^′ (1−u) = ((−1)/(1−u))  =−Σ_(n=0) ^∞  u^n  ⇒ ln(1−u) =−Σ_(n=0) ^∞  (u^(n+1) /(n+1)) +c  =− Σ_(n=1) ^∞   (u^n /n) =Σ_(n=1) ^∞   (u^(n−1) /n)    (c=0)⇒  ln(1−x^2 )  = Σ_(n=1) ^∞    (x^(2n−2) /n) ⇒  ∫_0 ^1  ln(1−x^2 )dx = Σ_(n=1) ^∞   (1/(n(2n−1))) =A  (A/2) = Σ_(n=1) ^∞    (1/(2n(2n−1)))  =Σ_(n=1) ^∞ (  (1/(2n−1)) −(1/(2n)))=  lim_(n→+∞)  Σ_(k=1) ^n   ((1/(2k−1)) −(1/(2k)))  but  Σ_(k=1) ^n  (1/(2k−1)) = 1 +(1/3) +(1/5) +... +(1/(2n−1))  =1 +(1/2) +(1/3) +(1/4) +......+(1/(2n−1)) +(1/(2n))  −(1/2) −(1/4) −....−(1/(2n)) = H_(2n)  −(1/2) H_n   Σ_(k=1) ^n  (1/(2k−1)) −(1/2) Σ_(k=1) ^∞  (1/k)  = H_(2n)  −(1/2) H_n  −(1/2) H_n  = H_(2n)  −H_n   =ln(2n)+γ +o((1/n)) −ln(n)−δ  −o((1/n))  =ln(((2n)/n)) +o((1/n)) →ln(2) (n→+∞) so  so  ∫_0 ^1 ln(1−x^2 )dx  =2ln2 .

3)wehaveln(1u)=11u=n=0unln(1u)=n=0un+1n+1+c=n=1unn=n=1un1n(c=0)ln(1x2)=n=1x2n2n01ln(1x2)dx=n=11n(2n1)=AA2=n=112n(2n1)=n=1(12n112n)=limn+k=1n(12k112k)butk=1n12k1=1+13+15+...+12n1=1+12+13+14+......+12n1+12n1214....12n=H2n12Hnk=1n12k112k=11k=H2n12Hn12Hn=H2nHn=ln(2n)+γ+o(1n)ln(n)δo(1n)=ln(2nn)+o(1n)ln(2)(n+)soso01ln(1x2)dx=2ln2.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com