Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 35229 by abdo mathsup 649 cc last updated on 16/May/18

find the value of integral  ∫_0 ^∞   e^(−(2+ia)^2 t^2 ) dt    with a from R    ∣a∣<1.

findthevalueofintegral0e(2+ia)2t2dtwithafromRa∣<1.

Commented by abdo mathsup 649 cc last updated on 17/May/18

Remark  we have A(α)= ∫_0 ^∞  e^(−(4 +4iα −α^2 )t^2 ) dt  = ∫_0 ^∞     e^(−(4 −α^2 )t^2 −4iαt^2 ) dt  = ∫_0 ^∞   e^((α^2 −4)t^2 ) {cos(4αt^2 ) −isin(4αt^2 )}dt =  ∫_0 ^∞    e^((α^2 −4)t^2 )  cos(4αt^2 ) −i ∫_0 ^∞   e^((α^2 −4)t^2 )  sin(4αt^2 )dt  ⇒ ∫_0 ^∞   e^((α^2 −4)t^2 ) cos(4αt^2 )dt = ((√π)/(4+α^2 ))  and  ∫_0 ^∞   e^((α^2 −4)t^2 ) sin(4αt^2 )dt = ((α(√π))/(8 +2α^2 )) .

RemarkwehaveA(α)=0e(4+4iαα2)t2dt=0e(4α2)t24iαt2dt=0e(α24)t2{cos(4αt2)isin(4αt2)}dt=0e(α24)t2cos(4αt2)i0e(α24)t2sin(4αt2)dt0e(α24)t2cos(4αt2)dt=π4+α2and0e(α24)t2sin(4αt2)dt=απ8+2α2.

Commented by abdo mathsup 649 cc last updated on 17/May/18

let put A(α) = ∫_0 ^∞    e^(−(2+iα)^2 t^2 ) dt  changement  (2+iα)t =x give  A(α) = (1/(2+iα)) ∫_0 ^∞     e^(−x^2 ) dx= ((√π)/(2(2+iα)))  = ((√π)/2) ((2−iα)/(4 +α^2 )) = ((√π)/(4+α^2 )) −((α(√π))/(2(4+α^2 )))

letputA(α)=0e(2+iα)2t2dtchangement(2+iα)t=xgiveA(α)=12+iα0ex2dx=π2(2+iα)=π22iα4+α2=π4+α2απ2(4+α2)

Answered by sma3l2996 last updated on 16/May/18

let u=(2+ia)t⇒dt=(du/(2+ia))  I=∫_0 ^∞ e^(−(2+ia)^2 t^2 ) dt=(1/(2+ia))∫_0 ^∞ e^(−u^2 ) du  =((√π)/(2(2+ia)))

letu=(2+ia)tdt=du2+iaI=0e(2+ia)2t2dt=12+ia0eu2du=π2(2+ia)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com