Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 25851 by abdo imad last updated on 15/Dec/17

find the value of integral   ∫_R (z−a)^(−1) dz  with a from C  aplly  this result to find the value of   ∫_0 ^∞ (2 +x^4_  )^(−1) dx.

findthevalueofintegralR(za)1dzwithafromCapllythisresulttofindthevalueof0(2+x4)1dx.

Commented by abdo imad last updated on 21/Dec/17

let put I(ξ)= ∫_(−ξ) ^ξ (dx/(x−a))  and a=α+iβ and β not 0  I(ξ) = ∫_(−ξ) ^ξ ((x−α+ iβ)/((x−α)^2  +β^2^  ))dx= A(ξ)+B(ξ) where  A(ξ) = ∫_(−ξ) ^ξ  ((x−α)/((x−α)^2 +β^2 ))dx and B(ξ) =iβ∫_(−ξ) ^ξ  (dx/((x−α)^2 +β^2 ))  but A(ξ)= (1/2)ln( (((ξ−α)^2 +β^2 )/((ξ+α)^2 +β^2 )) )   and lim _(ξ−>∝) A(ξ)=0  and by the changement x−α=βt    B(ξ)=iβ ∫_((−ξ−α)/β) ^((ξ−α)/β)    (β/(β^2 t^2  +β^2 ))dt =i( artan(((ξ−α)/β) ) +artan( ((ξ+α)/β)))  −−>if β>0   lim  B(ξ)_(ξ−>∝)   =iπ  if β<0   lim B(ξ)_(ξ−>∝)   =−iπ...look that β =im(a)  value of  I=∫_0 ^∞   (dx/(2+x^4 ))     I= (1/2)  ∫_R  (dx/(2+x^4 ))  and by changement  x= 2^(1/4)  t     ...I=   (2^(1/4) /4)  ∫_R    (dt/(t^4 +1))   let find the poles of f(z)= (1/(z^4 +1))  the roots of  z^4   +1=0  are the complex  z_k  =  e^(i(2k+1)(π/4))    k from[[0.3]]  z_0 = e^(i(π/4))    .. z_1   = e^(i((3π)/4))    .. z_2   = e^(i((5π)/4))     ..z_3   = e^(i((7π_ )/4))   f(z)  = Σ_(k=0) ^(k=3)    (λ_k /(z−z_k ))   and     λ_k   =   (1/(der( 1+z^4 )))=−(1/4)z_k    (der  means derivative  )  ∫_R   f(z) dz  =   ((−1)/4)  (  ∫_R  (z_0 /(z−z_0 ))dz  + ∫_R    (z_1 /(z−z_1 ))dz  +∫_R   (z_2 /(z−z_2 ))dz  +∫_R   (z_3 /(z−z_3 ))dz   )  = ((−1)/4) (iπ z_0   +iπ z_1  −iπz_2   −iπ z_3    ) because  im(z_0   )>0  im(z_1  )>0.. im(z_2   )<0    im(z_3  )<0  ∫_R   f(z)dz  = ((−iπ)/4)  ( z_0   +z_1   +z_2   +z_3    )  =((−iπ)/4)  ( z_0   − z_0 ^−  +z_0   −z_0 ^−    )  =((−iπ)/2)(2i) im(z_0  )  =  ((π (√2))/2)−−−>  ∫_0 ^∞ (dx/(2+x^4 ))  =  2^(1/4)   .4^(−1)  .((π(√2))/2)  −−−> ∫_R (dx/(2+x^4 ))  =  ((π(√2).2^(1/4) )/8)   ...

letputI(ξ)=ξξdxxaanda=α+iβandβnot0I(ξ)=ξξxα+iβ(xα)2+β2dx=A(ξ)+B(ξ)whereA(ξ)=ξξxα(xα)2+β2dxandB(ξ)=iβξξdx(xα)2+β2butA(ξ)=12ln((ξα)2+β2(ξ+α)2+β2)andlimξ>∝A(ξ)=0andbythechangementxα=βtB(ξ)=iβξαβξαβββ2t2+β2dt=i(artan(ξαβ)+artan(ξ+αβ))>ifβ>0limB(ξ)ξ>∝=iπifβ<0limB(ξ)ξ>∝=iπ...lookthatβ=im(a)valueofI=0dx2+x4I=12Rdx2+x4andbychangementx=214t...I=2144Rdtt4+1letfindthepolesoff(z)=1z4+1therootsofz4+1=0arethecomplexzk=ei(2k+1)π4kfrom[[0.3]]z0=eiπ4..z1=ei3π4..z2=ei5π4..z3=ei7π4f(z)=k=0k=3λkzzkandλk=1der(1+z4)=14zk(dermeansderivative)Rf(z)dz=14(Rz0zz0dz+Rz1zz1dz+Rz2zz2dz+Rz3zz3dz)=14(iπz0+iπz1iπz2iπz3)becauseim(z0)>0im(z1)>0..im(z2)<0im(z3)<0Rf(z)dz=iπ4(z0+z1+z2+z3)=iπ4(z0z0+z0z0)=iπ2(2i)im(z0)=π22>0dx2+x4=214.41.π22>Rdx2+x4=π2.2148...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com