All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 25851 by abdo imad last updated on 15/Dec/17
findthevalueofintegral∫R(z−a)−1dzwithafromCapllythisresulttofindthevalueof∫0∞(2+x4)−1dx.
Commented by abdo imad last updated on 21/Dec/17
letputI(ξ)=∫−ξξdxx−aanda=α+iβandβnot0I(ξ)=∫−ξξx−α+iβ(x−α)2+β2dx=A(ξ)+B(ξ)whereA(ξ)=∫−ξξx−α(x−α)2+β2dxandB(ξ)=iβ∫−ξξdx(x−α)2+β2butA(ξ)=12ln((ξ−α)2+β2(ξ+α)2+β2)andlimξ−>∝A(ξ)=0andbythechangementx−α=βtB(ξ)=iβ∫−ξ−αβξ−αβββ2t2+β2dt=i(artan(ξ−αβ)+artan(ξ+αβ))−−>ifβ>0limB(ξ)ξ−>∝=iπifβ<0limB(ξ)ξ−>∝=−iπ...lookthatβ=im(a)valueofI=∫0∞dx2+x4I=12∫Rdx2+x4andbychangementx=214t...I=2144∫Rdtt4+1letfindthepolesoff(z)=1z4+1therootsofz4+1=0arethecomplexzk=ei(2k+1)π4kfrom[[0.3]]z0=eiπ4..z1=ei3π4..z2=ei5π4..z3=ei7π4f(z)=∑k=0k=3λkz−zkandλk=1der(1+z4)=−14zk(dermeansderivative)∫Rf(z)dz=−14(∫Rz0z−z0dz+∫Rz1z−z1dz+∫Rz2z−z2dz+∫Rz3z−z3dz)=−14(iπz0+iπz1−iπz2−iπz3)becauseim(z0)>0im(z1)>0..im(z2)<0im(z3)<0∫Rf(z)dz=−iπ4(z0+z1+z2+z3)=−iπ4(z0−z0−+z0−z0−)=−iπ2(2i)im(z0)=π22−−−>∫0∞dx2+x4=214.4−1.π22−−−>∫Rdx2+x4=π2.2148...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com