All Questions Topic List
Relation and Functions Questions
Previous in All Question Next in All Question
Previous in Relation and Functions Next in Relation and Functions
Question Number 31982 by abdo imad last updated on 17/Mar/18
findthevalueof∑n=0∞(−1)n(2n+1)(2n+3).
Commented by 6123 last updated on 18/Mar/18
∑∞n=0(−1)n(2n+1)(2n+3)=12∑∞n=0(−1)n(12n+1−12n+3).=12[(1−13)+(15−13)+(15−17)+(19−17)+...]=12[1+2(15+19+113+...)−2(13+17+111+...)]therestishistory.
Commented by abdo imad last updated on 18/Mar/18
letputS=∑n=0∞(−1)n(2n+1)(2n+3)andS(x)=∑n=0∞xn(2n+1)(2n+3)wehaveS(−1)=SbutS(x)=12(∑n=0∞(12n+1−12n+3)xn)⇒forx≠o2S(x)=∑n=0∞xn2n+1−∑n=0∞xn2n+3but∑n=0∞xn2n+3=13+∑n=1∞xn2n+3=13+∑n=0∞xn−12n+1=13+1x∑n=0∞xn2n+1⇒2S(x)=−13+(1−1x)∑n=0∞xn2n+1letcalculatefor−1⩽x<0A(x)=∑n=0∞xn2n+1⇒A(x)=∑n=0∞(−1)n(−x)n2n+1=1−x∑n=0∞(−1)n(−x)2n+12n+1=1−xφ(−x)withφ(t)=∑n=0∞(−1)nt2n+12n+1⇒φ′(t)=∑n=0∞(−t2)n=11+t2⇒φ(t)=arctant+λbutλ=φ(0)=0⇒A(x)=1−xrctan(−x)sofor−1⩽x<0wehaveS(x)=−16+12x−1x1−xarctan(−x)=x−12x−xarctan(−x)−16andS(−1)=S=−2−2arctan(1)−16=π4−16.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com