Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 67534 by mathmax by abdo last updated on 28/Aug/19

find the value of  Π_(n=2) ^∞  ((n^3 −1)/(n^3  +1))  and Π_(n=1) ^∞ (1+(1/n^2 ))

findthevalueofn=2n31n3+1andn=1(1+1n2)

Commented by ~ À ® @ 237 ~ last updated on 29/Aug/19

A=Π_(n=2) ^∞  ((n^3 −1)/(n^3 +1))= Π_(n=2) ^∞  (((n−1)(n^2 +n+1))/((n+1)(n^2 −n+1)))    n^2 +n+1=(n−j)(n−j^_ )    with  j=((−1)/2)+i(((√3) )/2)  n^2 −n+1=[(n−1)+1]^2 −(n−1)=(n−1)^2 +2(n−1)+1−(n−1)=p^2 +p+1 =(p−j)(p−j^_ )  with  p=n−1  n^2 −n+1=(n−1−j)(n−1−j^_ )  A_p =Π_(n=2) ^p ((n−1)/(n+1)) .Π_(n=2) ^p  (((j−n)(j^_ −n))/([j−(n−1)][j^_ −(n−1)])) =(((p−1)!)/(((p+1)!)/(2!))).(((j−p)(j^_ −p))/((j−1)(j^_ −1))) =(2/((2−2Re(j)))) .(((j−p)(j^_ −p))/p^2 )   A=lim_(n→∞)  A_p  =(1/(1−Re(j))) = (2/3)   Knowing  that  sin(πz)=πzΠ_(n=1) ^∞ (1−(z^2 /n^2 ))    let  take  z=ia  with a≠0   sin(iπa)=(iπa)Π_(n=1) ^∞ (1+(a^2 /n^2 ))   Π_(n=1) ^∞ (1+(a^2 /n^2 ))=((sin(iπa))/(iπa)) =(((e^(−πa) −e^(πa) )/(2i))/(iπa)) =((sh(πa))/(πa))

A=n=2n31n3+1=n=2(n1)(n2+n+1)(n+1)(n2n+1)n2+n+1=(nj)(nj_)withj=12+i32n2n+1=[(n1)+1]2(n1)=(n1)2+2(n1)+1(n1)=p2+p+1=(pj)(pj_)withp=n1n2n+1=(n1j)(n1j_)Ap=pn=2n1n+1.pn=2(jn)(j_n)[j(n1)][j_(n1)]=(p1)!(p+1)!2!.(jp)(j_p)(j1)(j_1)=2(22Re(j)).(jp)(j_p)p2A=limnAp=11Re(j)=23Knowingthatsin(πz)=πzn=1(1z2n2)lettakez=iawitha0sin(iπa)=(iπa)n=1(1+a2n2)n=1(1+a2n2)=sin(iπa)iπa=eπaeπa2iiπa=sh(πa)πa

Commented by Abdo msup. last updated on 29/Aug/19

thank you sir.  let  A =Π_(n=2) ^∞  ((n^3 −1)/(n^3  +1)) and A_n =Π_(k=2) ^n  ((k^3 −1)/(k^(3 ) +1)) ⇒  A_n   =Π_(k=2) ^n   (((k−1)(k^2 +k+1))/((k+1)(k^2 −x+1)))  =Π_(k=2) ^n  ((k−1)/(k+1))∐_(k=2) ^n  ((k^2  +k+1)/(k^2 −k +1))  ⇒ln(A_n )=Σ_(k=2) ^n ln(((k−1)/(k+1)))+Σ_(k=2) ^n ln(((k^2  +k+1)/(k^2 −k+1)))  =Σ_(k=2) ^n  {ln(k−1)−ln(k+1))  +Σ_(k=2) ^n { ln(k^2  +k+1)−ln(k^2 −k+1)}  =Σ_(k=2) ^n {ln(k−1)−ln(k)}+Σ_(k=2) ^n {ln(k)−ln(k+1)}  +Σ_(k=2) ^n (u_k −u_(k−1) )  with u_k =ln(k^2  +k+1)  =ln(1)−ln(2)+ln(2)−ln(3)+....+ln(n−1)−ln(n)  +ln(2)−ln(3)+ln(3)−ln(4)+...+ln(n)−ln(n+1)  +u_n −u_1   =−ln(n)+ln(2)−ln(n+1) +ln(n^2 +n+1)−ln(3)  =ln((2/3))+ln(((n^2 +n+1)/(n^2  +n)))→ln((2/3)) ⇒lim_(n→+∞) A_n =(2/3)

thankyousir.letA=n=2n31n3+1andAn=k=2nk31k3+1An=k=2n(k1)(k2+k+1)(k+1)(k2x+1)=k=2nk1k+1k=2nk2+k+1k2k+1ln(An)=k=2nln(k1k+1)+k=2nln(k2+k+1k2k+1)=k=2n{ln(k1)ln(k+1))+k=2n{ln(k2+k+1)ln(k2k+1)}=k=2n{ln(k1)ln(k)}+k=2n{ln(k)ln(k+1)}+k=2n(ukuk1)withuk=ln(k2+k+1)=ln(1)ln(2)+ln(2)ln(3)+....+ln(n1)ln(n)+ln(2)ln(3)+ln(3)ln(4)+...+ln(n)ln(n+1)+unu1=ln(n)+ln(2)ln(n+1)+ln(n2+n+1)ln(3)=ln(23)+ln(n2+n+1n2+n)ln(23)limn+An=23

Commented by Abdo msup. last updated on 29/Aug/19

we have  sin(πz)=πz Π_(n=1) ^∞ (1−(z^2 /n^2 ))  let z=ix    (x real) ⇒sin(iπx) =iπxΠ_(n=1) ^∞ (1+(x^2 /n^2 )) ⇒  Π_(n=1) ^∞ (1+(x^2 /n^2 )) =((sin(iπx))/(iπx))   sinz =((e^(iz) −e^(−iz) )/(2i)) ⇒sin(iπx) =((e^(−πx) −e^(πx) )/(2i))  =−(1/i)sh(πx) ⇒Π_(n=1) ^∞ (1+(x^2 /n^2 )) =−(1/i) ((sh(πx))/(iπx))  =((sh(πx))/(πx))  x=1 ⇒ Π_(n=1) ^∞ (1+(1/n^2 )) =((sh(π))/π) .

wehavesin(πz)=πzn=1(1z2n2)letz=ix(xreal)sin(iπx)=iπxn=1(1+x2n2)n=1(1+x2n2)=sin(iπx)iπxsinz=eizeiz2isin(iπx)=eπxeπx2i=1ish(πx)n=1(1+x2n2)=1ish(πx)iπx=sh(πx)πxx=1n=1(1+1n2)=sh(π)π.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com