All Questions Topic List
Relation and Functions Questions
Previous in All Question Next in All Question
Previous in Relation and Functions Next in Relation and Functions
Question Number 65674 by mathmax by abdo last updated on 01/Aug/19
findthevalueof∑n=2∞n(n+1)2(n−1)3
Commented by mathmax by abdo last updated on 04/Aug/19
letS=∑n=2∞n(n+1)2(n−1)3⇒S=∑n=1∞n+1(n+2)2n3letdecomposeF(x)=x+1x3(x+2)2⇒F(x)=ax+bx2+cx3+dx+2+e(x+2)2c=limx→0x3F(x)=14e=limx→−2(x+2)2F(x)=−1−8=18⇒F(x)=ax+bx2+14x3+dx+2+18(x+2)2limx→+∞xF(x)=0=a+d⇒d=−a⇒F(x)=ax+bx2+14x3−ax+2+18(x+2)2F(1)=29=a+b+14−a3+172=23a+b+172⇒2=6a+9b+18⇒6a+9b=2−18=158F(−1)=0=−a+b−14−a+18=−2a+b−18⇒−2a+b=18⇒b=2a+18⇒6a+9(2a+18)=158⇒24a+98=158⇒24a=68=34⇒a=34.8.3=132b=116+18=316⇒F(x)=132x+316x2+14x3−132(x+2)+18(x+2)2Sn=∑k=1nF(k)=132∑k=1n1k+316∑k=1n1k2+14∑k=1n1k3−132∑k=1n1k+2+18∑k=1n1(x+2)2∑k=1n1k+2=∑k=3n+21k=∑k=1n1k−32+1n+1+1n+2⇒132∑k=1n1k−132∑k=1n1k+2=−132(−32+1n+1+1n+2)→364⇒∑k=1n1(x+2)2=∑k=3n+21k2=ξn(2)+1(n+1)2+1(n+2)2−1−14→ξ(2)−54⇒S=limn→+∞Sn=364+316ξ(2)+14ξ(3)+18{ξ(2)−54}=364+516π26+14ξ(3)−532=−764+5π296+14ξ(3)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com