Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 65674 by mathmax by abdo last updated on 01/Aug/19

find the value of Σ_(n=2) ^∞  (n/((n+1)^2 (n−1)^3 ))

findthevalueofn=2n(n+1)2(n1)3

Commented by mathmax by abdo last updated on 04/Aug/19

let S =Σ_(n=2) ^∞  (n/((n+1)^2 (n−1)^3 )) ⇒S =Σ_(n=1) ^∞ ((n+1)/((n+2)^2 n^3 ))  let decompose F(x) =((x+1)/(x^3 (x+2)^2 )) ⇒  F(x) =(a/x) +(b/x^2 ) +(c/x^3 ) +(d/(x+2)) +(e/((x+2)^2 ))  c =lim_(x→0) x^3  F(x) =(1/4)  e =lim_(x→−2) (x+2)^2 F(x) =((−1)/(−8))=(1/8) ⇒  F(x) =(a/x) +(b/x^2 ) +(1/(4x^3 )) +(d/(x+2)) +(1/(8(x+2)^2 ))  lim_(x→+∞) xF(x) =0 =a+d ⇒d =−a ⇒  F(x) =(a/x) +(b/x^2 ) +(1/(4x^3 ))−(a/(x+2)) +(1/(8(x+2)^2 ))  F(1) =(2/9) =a+b+(1/4)−(a/3) +(1/(72)) =(2/3)a +b +(1/(72)) ⇒  2 =6a+9b +(1/8) ⇒6a+9b =2−(1/8) =((15)/8)  F(−1) =0 =−a+b−(1/4)−a +(1/8) =−2a+b−(1/8) ⇒  −2a+b =(1/8) ⇒b =2a+(1/8) ⇒6a+9(2a+(1/8))=((15)/8) ⇒  24a +(9/8) =((15)/8) ⇒24a=(6/8) =(3/4) ⇒a =(3/(4.8.3)) =(1/(32))  b =(1/(16))+(1/8) =(3/(16)) ⇒F(x) =(1/(32x)) +(3/(16x^2 )) +(1/(4x^3 )) −(1/(32(x+2))) +(1/(8(x+2)^2 ))  S_n  =Σ_(k=1) ^n  F(k) =(1/(32))Σ_(k=1) ^n  (1/k) +(3/(16)) Σ_(k=1) ^n  (1/k^2 ) +(1/4)Σ_(k=1) ^n  (1/k^3 )  −(1/(32))Σ_(k=1) ^n  (1/(k+2)) +(1/8)Σ_(k=1) ^n  (1/((x+2)^2 ))  Σ_(k=1) ^n  (1/(k+2)) =Σ_(k=3) ^(n+2)  (1/k) =Σ_(k=1) ^n  (1/k)−(3/2) +(1/(n+1)) +(1/(n+2)) ⇒  (1/(32))Σ_(k=1) ^n  (1/k) −(1/(32))Σ_(k=1) ^n  (1/(k+2)) =−(1/(32))(−(3/2) +(1/(n+1)) +(1/(n+2)))→(3/(64)) ⇒  Σ_(k=1) ^n  (1/((x+2)^2 )) =Σ_(k=3) ^(n+2)  (1/k^2 ) =ξ_n (2)+(1/((n+1)^2 )) +(1/((n+2)^2 ))−1−(1/4)  →ξ(2)−(5/4) ⇒ S =lim_(n→+∞)  S_n   =(3/(64)) +(3/(16))ξ(2) +(1/4)ξ(3) +(1/8){ξ(2)−(5/4)}  =(3/(64)) +(5/(16)) (π^2 /6) +(1/4)ξ(3)−(5/(32)) =−(7/(64)) +((5π^2 )/(96)) +(1/4)ξ(3)

letS=n=2n(n+1)2(n1)3S=n=1n+1(n+2)2n3letdecomposeF(x)=x+1x3(x+2)2F(x)=ax+bx2+cx3+dx+2+e(x+2)2c=limx0x3F(x)=14e=limx2(x+2)2F(x)=18=18F(x)=ax+bx2+14x3+dx+2+18(x+2)2limx+xF(x)=0=a+dd=aF(x)=ax+bx2+14x3ax+2+18(x+2)2F(1)=29=a+b+14a3+172=23a+b+1722=6a+9b+186a+9b=218=158F(1)=0=a+b14a+18=2a+b182a+b=18b=2a+186a+9(2a+18)=15824a+98=15824a=68=34a=34.8.3=132b=116+18=316F(x)=132x+316x2+14x3132(x+2)+18(x+2)2Sn=k=1nF(k)=132k=1n1k+316k=1n1k2+14k=1n1k3132k=1n1k+2+18k=1n1(x+2)2k=1n1k+2=k=3n+21k=k=1n1k32+1n+1+1n+2132k=1n1k132k=1n1k+2=132(32+1n+1+1n+2)364k=1n1(x+2)2=k=3n+21k2=ξn(2)+1(n+1)2+1(n+2)2114ξ(2)54S=limn+Sn=364+316ξ(2)+14ξ(3)+18{ξ(2)54}=364+516π26+14ξ(3)532=764+5π296+14ξ(3)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com