All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 67342 by mathmax by abdo last updated on 26/Aug/19
findthevalueof∫−∞∞sin(2x2)(x2−x+3)3dx
Commented by mathmax by abdo last updated on 26/Aug/19
letI=∫−∞+∞sin(2x2)(x2−x+3)3dx⇒I=Im(∫−∞+∞e2iz2(z2−z+3)3dz)letW(z)=e2iz2(z2−z+3)3polesofW?z2−z+3=0→Δ=1−12=−11=(i11)2⇒z1=1+i112z2=1−i112⇒W(z)=e2iz2(z−z1)3(z−z2)3letapplyresidustheorem∫−∞+∞W(z)dz=2iπRes(W,z1)(z1isatriplepole)Res(W,z1)=limz→z11(3−1)!{(z−z1)3W(z)}(2)}=limz→z112{e2iz2(z−z2)3}(2)wehave{e2iz2(z−z2)3}(2)={4ize2iz2(z−z2)3−3(z−z2)2e2iz2(z−z2)6}(1)={4ize2iz2(z−z2)−3e2iz2(z−z2)4}(1)={(4iz2−4iz2z)e2iz2(z−z2)4}(1)={(8iz−4iz2)e2iz2+4ize2iz2(4iz2−4iz2z)(z−z2)4−4(z−z2)3{4iz2−4iz2z}e2iz2(z−z2)8={(8iz−4iz2−16z3+16z2z2)(z−z2)−16iz2+16iz2z}e2iz2(z−z2)52Res(W,z1)={(8iz1−4iz2−16z13+16z2z12)(z1−z2)−16iz12+16iz1z2}e2iz12(z1−z2)5withz1−z2=i11resttofinichthecalculus...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com