Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 169382 by infinityaction last updated on 29/Apr/22

   find the value of  [v] if v denotes maximum       value of x^2  + y^2  , where (x+5)^2  + (y−12)^2  = 14      (hint [•] repersent greatest integer function of “ •”)

findthevalueof[v]ifvdenotesmaximumvalueofx2+y2,where(x+5)2+(y12)2=14(hint[]repersentgreatestintegerfunctionof)

Commented by infinityaction last updated on 29/Apr/22

thank you sir and  got my mistake

thankyousirandgotmymistake

Commented by infinityaction last updated on 29/Apr/22

sir solution

sirsolution

Commented by mr W last updated on 29/Apr/22

v=x^2 +y^2 =r^2   r is the distance from the origin to   a point on the circle  (x+5)^2 +(y−12)^2 =14.  it′s clear that the maximum distance  is the distance from  (0,0) to (−5,12) plus the radius of  the circle, which is (√(14)). i.e.  r_(max) =(√((−5−0)^2 +(12−0)^2 ))+(√(14))=13+(√(14))  v=r_(max) ^2 =(13+(√(14)))^2 ≈280.3

v=x2+y2=r2risthedistancefromtheorigintoapointonthecircle(x+5)2+(y12)2=14.itsclearthatthemaximumdistanceisthedistancefrom(0,0)to(5,12)plustheradiusofthecircle,whichis14.i.e.rmax=(50)2+(120)2+14=13+14v=rmax2=(13+14)2280.3

Commented by greougoury555 last updated on 29/Apr/22

 ⇒v = (√(14)) +(√((−5)^2 +12^2 )) = 13+(√(14))  ⇒ [ v ] = 16

v=14+(5)2+122=13+14[v]=16

Commented by infinityaction last updated on 29/Apr/22

use circle equation  same solution sir   btw thanks

usecircleequationsamesolutionsirbtwthanks

Commented by infinityaction last updated on 29/Apr/22

but sir i am confused  because let x= −5 and y = (√(14)) +12  then x^2 + y^2  = 272.799  [x^2 +y^2 ]= [272.799] = 272

butsiriamconfusedbecauseletx=5andy=14+12thenx2+y2=272.799[x2+y2]=[272.799]=272

Commented by mr W last updated on 29/Apr/22

v=(13+(√(14)))^2 ≈280.3  [v]=280

v=(13+14)2280.3[v]=280

Answered by kapoorshah last updated on 29/Apr/22

let   x + 5 = (√(14)) cos α  y − 12 = (√(14)) sin α  x^2  + y^2  = ((√(14)) cos α − 5)^2  + ((√(14)) sin α + 12)^2                   = 14 − 10(√(14)) cos α + 24(√(14)) sin α + 169                  = 183 + 26(√(14)) cos (α − tan^(−1) (− ((12)/5)))  [v] = 183 + 26(√(14))         ≈ 280,283

letx+5=14cosαy12=14sinαx2+y2=(14cosα5)2+(14sinα+12)2=141014cosα+2414sinα+169=183+2614cos(αtan1(125))[v]=183+2614280,283

Commented by infinityaction last updated on 29/Apr/22

thank you

thankyou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com