All Questions Topic List
Others Questions
Previous in All Question Next in All Question
Previous in Others Next in Others
Question Number 45976 by maxmathsup by imad last updated on 19/Oct/18
findun=∫0∞e−n[x]cos(nx)dxandvn=∫0∞en[x]sin(nx)dx2)findnatureofΣunvnandΣunvn
Commented by maxmathsup by imad last updated on 20/Oct/18
wehaveun+ivn=∫0∞e−n[x]einxdx=∫0∞e−n[x]+inxdx=∑k=0∞∫kk+1e−kn+inxdx=∑k=0∞e−nk∫kk+1einxdx=∑k=0∞e−nk1in[einx]kk+1=1in∑k=0∞e−nk{ein(k+1)−eink}=1inein∑k=0∞e−nk+ink−1in∑k=0∞e−nk+ink=1inein∑k=0∞(e−n+in)k−1in∑k=0∞(e−n+in)k=1inein11−e−n+in−1in11−e−n+in=ein−1in11−e−n+in=cos(n)+isin(n)−1in11−e−n(cosn+isin(n))=−i(cos(n)+isin(n)−1)n11−e−ncos(n)−ie−nsin(n)=sin(n)−icos(n)+in1−e−ncos(n)+ie−nsin(n)(1−e−ncos(n))2+e−2nsin2(n)afterweseparateRe(..)andIm(...)...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com