Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 40620 by math khazana by abdo last updated on 25/Jul/18

find  ∫   ((x+1)(√(1+x^2 )) +(1+x^2 )(√(x+1)))dx

find((x+1)1+x2+(1+x2)x+1)dx

Answered by tanmay.chaudhury50@gmail.com last updated on 25/Jul/18

∫x(√(1+x^2 )) dx+∫(√(x^2 +1)) dx+∫(√(x+1)) dx+∫x^2 (√(x+1))  I_1 =∫x(√(1+x^2 )) dx   =(1/2)∫(√(1+x^2 )) d(1+x^2 )  =(1/2)×(2/3)(1+x^2 )^(3/2)   I_2 =∫(√(x^2 +1)) dx use formula  =(x/2)(√(x^2 +1))  +(1/2)ln(x+(√(x^2 +1)) )  I_3 =∫(√(x+1)) dx  =(((x+1)^(3/2) )/(3/2))  I_4 =∫x^2 (√(x+1)) dx  let    t^2 =x+1    2tdt=dx  ∫(t^2 −1)^2 ×t×2tdt    2∫t^2 (t^4 −2t^2 +1)dt  2∫t^6 −2t^4 +t^2   dt  2((t^7 /7)−((2t^5 )/5)+(t^3 /3))  (2/7)(t^8 /8)−(4/5)×(t^6 /6)+(2/3)×(t^4 /4)  (/)

x1+x2dx+x2+1dx+x+1dx+x2x+1I1=x1+x2dx=121+x2d(1+x2)=12×23(1+x2)32I2=x2+1dxuseformula=x2x2+1+12ln(x+x2+1)I3=x+1dx=(x+1)3232I4=x2x+1dxlett2=x+12tdt=dx(t21)2×t×2tdt2t2(t42t2+1)dt2t62t4+t2dt2(t772t55+t33)27t8845×t66+23×t44

Answered by MJS last updated on 25/Jul/18

∫x^2 (√(x+1))dx=(2/7)(x^2 −((4x)/5)+(8/(15)))(x+1)^(3/2)         [((t=x+1 → dx=dt)),((∫(t−1)^2 (√t)dt=∫(t^2 −2t+1)(√t)dt=∫(t^(5/2) −2t^(3/2) +t^(1/2) )dt)),((∫t^q dt=(1/(q+1))t^(q+1) )) ]  ∫x(√(x^2 +1))dx=(1/3)(x^2 +1)^(3/2)         [((t=x^2 +1 → dx=(dt/(2x)))),(((1/2)∫(√t)dt)),((∫t^q dt=(1/(q+1))t^(q+1) )) ]  ∫(√(x^2 +1))dx=(1/2)(x(√(x^2 +1))+ln∣x+(√(x^2 +1))∣)        [((t=arctan x → dx=sec^2  t dt)),((∫sec^2  t (√(1+tan^2  t))dt=∫sec^3  t dt)),((∫sec^n  t dt=((sec^(n−2)  t tan t)/(n−1))+((n−2)/(n−1))∫sec^(n−2)  t dt)) ]  ∫(√(x+1))dx=(2/3)(x+1)^(3/2)        [∫(x+a)^q dx=(1/(q+1))(x+a)^(q+1) ]

x2x+1dx=27(x24x5+815)(x+1)32[t=x+1dx=dt(t1)2tdt=(t22t+1)tdt=(t522t32+t12)dttqdt=1q+1tq+1]xx2+1dx=13(x2+1)32[t=x2+1dx=dt2x12tdttqdt=1q+1tq+1]x2+1dx=12(xx2+1+lnx+x2+1)[t=arctanxdx=sec2tdtsec2t1+tan2tdt=sec3tdtsecntdt=secn2ttantn1+n2n1secn2tdt]x+1dx=23(x+1)32[(x+a)qdx=1q+1(x+a)q+1]

Answered by maxmathsup by imad last updated on 25/Jul/18

I = ∫ (x+1)(√(1+x^2 ))dx +∫(1+x^2 )(√(x+1))=K+H  K = ∫ (x+1)(√(1+x^2 ))dx=_(x=sh(t))   ∫  (sh(t)+1)ch(t)ch(t)dx  = ∫  (sh(t)+1)ch^2 t dt = ∫  sh(t)ch^2 (t)dt  +∫  ch^2 t dt  =(1/3)ch^3 (t) + ∫  ((1+ch(2t))/2)dt  =(1/3)ch^3 (t) +(t/2) +(1/4)sh(2t) =(1/3){((e^t +e^(−t) )/2)} +(t/2) +(1/2)ch(t)sh(t)  =(1/6){x+(√(1+x^2 )) + (x+(√(1+x^2 )))^(−1) }  +((ln(x+(√(1+x^2 ))))/2)+((x(√(1+x^2 )))/2) +c_1   H = ∫ (1+x^2 )(√(x+1))dx =_((√(x+1)) =t) ∫   (1+(t^2 −1)^2 )t (2tdt)  =2 ∫  t^2 (1+t^4 −2t^2 +1)dt  =2  ∫   t^2 (t^4  −2t^2  +2)dt  =2 ∫  (t^6   −2t^4  +2t^2 )dt =2{(t^7 /7) −(2/5)t^5  +(2/3)t^3 } +c_2   =(2/7)((√(x+1)))^7  −(4/5) ((√(x+1)))^(5 )  +(4/3) ((√(1+x)))^3  +c_2   I =K +H  the value of I is determined.

I=(x+1)1+x2dx+(1+x2)x+1=K+HK=(x+1)1+x2dx=x=sh(t)(sh(t)+1)ch(t)ch(t)dx=(sh(t)+1)ch2tdt=sh(t)ch2(t)dt+ch2tdt=13ch3(t)+1+ch(2t)2dt=13ch3(t)+t2+14sh(2t)=13{et+et2}+t2+12ch(t)sh(t)=16{x+1+x2+(x+1+x2)1}+ln(x+1+x2)2+x1+x22+c1H=(1+x2)x+1dx=x+1=t(1+(t21)2)t(2tdt)=2t2(1+t42t2+1)dt=2t2(t42t2+2)dt=2(t62t4+2t2)dt=2{t7725t5+23t3}+c2=27(x+1)745(x+1)5+43(1+x)3+c2I=K+HthevalueofIisdetermined.

Commented by maxmathsup by imad last updated on 25/Jul/18

error at line 5  K =(1/3)ch^3 (t) +(t/2)sh(2t)=(1/3){((e^t  +e^(−t) )/2)}^3  +(t/2) +(1/2)ch(t)sh(t)  =(1/(24)){ x+(√(1+x^2 ))+(x+(√(1+x^2 )))^(−1) }^3  +((ln(x+(√(1+x^2 ))))/2) +((x(√(1+x^2 )))/2) +c_1

erroratline5K=13ch3(t)+t2sh(2t)=13{et+et2}3+t2+12ch(t)sh(t)=124{x+1+x2+(x+1+x2)1}3+ln(x+1+x2)2+x1+x22+c1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com