Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 85166 by mathmax by abdo last updated on 19/Mar/20

find ∫  (x^2 −1)(√(x^2  +1))dx

find(x21)x2+1dx

Commented by john santu last updated on 21/Mar/20

let K = ∫ x^2  (√(x^2 +1)) dx  K = (1/2)∫ x { 2x(√(x^2 +1)) } dx  K= (1/2) ∫ x { (√(x^2 +1)) d(x^2 +1) }  = (1/2){ (2/3) x (x^2 +1)^(3/2) −∫ (x^2 +1)^(3/2)  dx}  = (1/3)x(x^2 +1)^(3/2) −(1/2) ∫ sec^5 u du  [ x = tan u ]  H= ∫ sec^5 u du = ∫ sec^3 u d(tan u)  H = sec^3 u tan u −∫ tan u (3sec^3 u tan u )du  H= sec^3 u tan u −3∫(sec^5 u−sec^3 u)du  4H = sec^3 u tan u +3∫ sec^3 u du  H = (1/4)x (x^2 +1)^(3/2) +(3/4)sec^3 u du  let J = ∫ (√(x^2 +1)) dx , [ x=tan t ]  J = ∫ sec^3 t dt = ∫ sec t d(tan t)  J = sec t tan t − ∫ tan^2 t sec t dt  J = sec t tan t − ∫ (sec^3 t−sec t) dt  2J = sec t tan t +ln ∣ x+(√(x^2 +1)) ∣  J= (1/2)sec t tan t + (1/2)ln ∣x+(√(x^2 +1)) ∣  ∴ H = (1/4)x(x^2 +1)^(3/2) +(7/8)x(x^2 +1)^(3/2) +  (7/8)ln ∣x+(√(x^2 +1)) ∣ +c  K= (1/3)x(x^2 +1)^(3/2) −(1/5)H  ∴ K =(1/3)x(x^2 +1)^(3/2) −(9/(40))x(x^2 +1)^(3/2)  −  (7/(40)) ln ∣x+(√(x^2 +1)) ∣ +c  K = ((13)/(120))x(x^2 +1)^(3/2)  −(7/(40))ln ∣x+(√(x^2 +1)) ∣ + c

letK=x2x2+1dxK=12x{2xx2+1}dxK=12x{x2+1d(x2+1)}=12{23x(x2+1)32(x2+1)32dx}=13x(x2+1)3212sec5udu[x=tanu]H=sec5udu=sec3ud(tanu)H=sec3utanutanu(3sec3utanu)duH=sec3utanu3(sec5usec3u)du4H=sec3utanu+3sec3uduH=14x(x2+1)32+34sec3uduletJ=x2+1dx,[x=tant]J=sec3tdt=sectd(tant)J=secttanttan2tsectdtJ=secttant(sec3tsect)dt2J=secttant+lnx+x2+1J=12secttant+12lnx+x2+1H=14x(x2+1)32+78x(x2+1)32+78lnx+x2+1+cK=13x(x2+1)3215HK=13x(x2+1)32940x(x2+1)32740lnx+x2+1+cK=13120x(x2+1)32740lnx+x2+1+c

Commented by mathmax by abdo last updated on 21/Mar/20

thank you sir john

thankyousirjohn

Commented by mathmax by abdo last updated on 21/Mar/20

A =∫(x^2 −1)(√(x^2  +1))dx   for this kind of integrals we do the  changement x =sh(t) ⇒A =∫ (sh^2 t−1)ch(t)ch(t)dt  A =∫ (sh^2 t−1)ch^2 t dt =∫ (((ch(2t)−1)/2)−1)(((ch(2t)+1)/2))dt  =(1/4)∫ (ch(2t)−3)(ch(2t)+1)dt  =(1/4)∫(ch^2 (2t)+ch(2t)−3ch(2t) −3)dt  =(1/4)∫(ch^2 (2t)−2ch(2t)−3)dt  =(1/8)∫ (1+ch(4t))dt −(1/2)∫ ch(2t)−(3/4)t +C  =(1/8)t  +(1/(32))sh(4t) −(1/4)sh(2t)−(3/4)t +C  =−(5/8)t +(1/(16))sh(2t)ch(2t) −(1/2)sh(2t)ch(2t) +C  =−(5/8)t +(1/8)sh(t)ch(t)(1+2sh^2 t) −sh(t)ch^2 t  +C  =−(5/8)ln(x+(√(1+x^2 ))) +(1/8)x(√(1+x^2 ))(1+2 x^2 ) −x (1+x^2  ) +C

A=(x21)x2+1dxforthiskindofintegralswedothechangementx=sh(t)A=(sh2t1)ch(t)ch(t)dtA=(sh2t1)ch2tdt=(ch(2t)121)(ch(2t)+12)dt=14(ch(2t)3)(ch(2t)+1)dt=14(ch2(2t)+ch(2t)3ch(2t)3)dt=14(ch2(2t)2ch(2t)3)dt=18(1+ch(4t))dt12ch(2t)34t+C=18t+132sh(4t)14sh(2t)34t+C=58t+116sh(2t)ch(2t)12sh(2t)ch(2t)+C=58t+18sh(t)ch(t)(1+2sh2t)sh(t)ch2t+C=58ln(x+1+x2)+18x1+x2(1+2x2)x(1+x2)+C

Answered by MJS last updated on 20/Mar/20

∫(x^2 −1)(√(x^2 +1))dx=       [t=x+(√(x^2 +1)) → dx=((√(x^2 +1))/(x+(√(x^2 +1))))dt]  =∫((t^3 /(16))−(t/4)−(5/(8t))−(1/(4t^3 ))+(1/(16t^5 )))dt=  =(t^4 /(64))−(t^2 /8)−(5/8)ln t +(1/(8t^2 ))−(1/(64t^4 ))=  =((t^8 −8t^6 +8t^2 −1)/(64t^4 ))−(5/8)ln t =  =((x(2x^2 −3)(√(x^2 +1)))/8)−(5/8)ln (x+(√(x^2 +1))) +C

(x21)x2+1dx=[t=x+x2+1dx=x2+1x+x2+1dt]=(t316t458t14t3+116t5)dt==t464t2858lnt+18t2164t4==t88t6+8t2164t458lnt==x(2x23)x2+1858ln(x+x2+1)+C

Commented by mathmax by abdo last updated on 20/Mar/20

thank you sir mjs

thankyousirmjs

Terms of Service

Privacy Policy

Contact: info@tinkutara.com