All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 78267 by msup trace by abdo last updated on 15/Jan/20
find∫−∞+∞x2−xx4−x2+3dx
Commented by mathmax by abdo last updated on 17/Jan/20
letA=∫−∞+∞x2−xx4−x2+3dx⇒A=∫−∞+∞x2x4−x2+3dx−∫−∞+∞xdxx4−x2+3(→odd)=∫−∞+∞x2x4−x2+3dxletW(z)=z2z4−z2+3polesofW?z4−z2+3=0⇒t2−t+3=0(t=z2)Δ=1−12=−11⇒t1=1+i112andt2=1−i112∣t1∣=121+11=12(23)=3⇒t1=3eiarctan(11)t2=conj(t1)=3e−iarctan(11)⇒W(z)=z2(z2−3eiarctan(11)(z2−3e−iarctan(11))=z2(z−αei2arctan(11))(z+αei2arctan(11))(z−αe−i2arctan(11))(z+αe−i2arctan(11))(withα=3)∫−∞+∞W(z)dz=2iπ{Res(W,αei2arctan(11))+Res(W,−αe−i2arctan(11))}Res(W,αei2arctan(11))=α2eiarctan(11)2αei2arctan(11)(α2eiarctan(11)−α2e−iarctan(11))=12α×ei2arctan(11)2isin(arctan(11))=14iαsin(arctan(11)×ei2arctan(11)....becontinued...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com