Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 147971 by mathmax by abdo last updated on 24/Jul/21

find ∫_(−∞) ^(+∞)  ((x^3 dx)/((x^2 +x+1)^4 ))

find+x3dx(x2+x+1)4

Commented by tabata last updated on 24/Jul/21

msr abdo can help me in question 147915 plese ?

msrabdocanhelpmeinquestion147915plese?

Commented by mathmax by abdo last updated on 24/Jul/21

3) f(z)=(e^z /(1−z))  by using double sum  e^z  =Σ_(n=0) ^∞  (z^n /(n!))  and (1/(1−z))=Σ_(n=0) ^∞  z^n    for ∣z∣<1 ⇒  f(z)=(Σ_(n=0) ^∞  (1/(n!))z^n ).(Σ_(n=0) ^∞  z^n )=(Σa_n z^n ).(Σb_n z^n )  =Σ c_n z^n      /c_n =Σ_(i+j=n) a_i b_j  = Σ_(i=0) ^n  a_i b_(n−i)  =Σ_(i=1) ^n  (1/(i!))×1  ⇒f(z)=Σ_(n=0) ^∞ (Σ_(i=0) ^n  (1/(i!)))z^n

3)f(z)=ez1zbyusingdoublesumez=n=0znn!and11z=n=0znforz∣<1f(z)=(n=01n!zn).(n=0zn)=(Σanzn).(Σbnzn)=Σcnzn/cn=i+j=naibj=i=0naibni=i=1n1i!×1f(z)=n=0(i=0n1i!)zn

Commented by mathmax by abdo last updated on 24/Jul/21

another way   f(z)=Σ_(n=0) ^∞  ((f^((n)) (0))/(n!))z^n    we have by leibniz  f^((n))  (z)=Σ_(k=0) ^n  C_n ^k  ((1/(1−z)))^((k)) (e^z )^((n−k))  =−e^z  Σ_(k=0) ^n  (((−1)^k k!)/((z−1)^(k+1) )) ⇒  f^((n)) (0)=−Σ_(k=0) ^n  (((−1)^k k!)/((−1)^(k+1) ))=Σ_(k=0) ^n k! ⇒  f(z)=Σ_(n=0) ^∞  (Σ_(k=0) ^n   ((k!)/(n!))C_n ^k )z^n   =Σ_(n=0) ^∞  (Σ_(k=0) ^n  ((k!)/(n!))×((n!)/(k!(n−k)!)))z^n   =Σ_(n=0) ^∞ (Σ_(k=0) ^n  (1/((n−k)!)))z^n     (n−k=i)  =Σ_(n=0) ^∞  (Σ_(i=0) ^n  (1/(i!)))z^n

anotherwayf(z)=n=0f(n)(0)n!znwehavebyleibnizf(n)(z)=k=0nCnk(11z)(k)(ez)(nk)=ezk=0n(1)kk!(z1)k+1f(n)(0)=k=0n(1)kk!(1)k+1=k=0nk!f(z)=n=0(k=0nk!n!Cnk)zn=n=0(k=0nk!n!×n!k!(nk)!)zn=n=0(k=0n1(nk)!)zn(nk=i)=n=0(i=0n1i!)zn

Commented by mathmax by abdo last updated on 24/Jul/21

f(z)=(1/z^2 )    at z=z_0  ⇒f(z)=Σ_(n=0) ^∞  ((f^((n)) (z_o ))/(n!))(z−z_o )^n     (z_0 ≠o)  f^((1)) (z)=−((2z)/z^4 )=−(2/z^3 )  f^((2)) (z)=((2.3 z^2 )/z^6 )=((2.3)/z^4 )  let[suppose f^((n) )(z)=(((−1)^n n!)/z^(n+1) ) ⇒  f^((n+1)) (z)=(d/dz){(((−1)^n n!)/z^(n+1) )} =(−1)^n n!×((−(n+1)z^n )/z^(2n+2) )  =(((−1)^(n+1) (n+1)!)/z^(n+2) )  (true) ⇒f^((n) )(z_0 )=(((−1)^n n!)/z_0 ^(n+1) ) ⇒  f(z)=Σ_(n=0) ^∞  (1/(n!))×(((−1)^n n!)/z_0 ^(n+1) )(z−z_0 )^n   f(z)=(1/z_0 )Σ_(n=0) ^∞ (−1)^n ((z/z_0 )−1)^n    for ∣z∣<∣z_0 ∣

f(z)=1z2atz=z0f(z)=n=0f(n)(zo)n!(zzo)n(z0o)f(1)(z)=2zz4=2z3f(2)(z)=2.3z2z6=2.3z4let[supposef(n)(z)=(1)nn!zn+1f(n+1)(z)=ddz{(1)nn!zn+1}=(1)nn!×(n+1)znz2n+2=(1)n+1(n+1)!zn+2(true)f(n)(z0)=(1)nn!z0n+1f(z)=n=01n!×(1)nn!z0n+1(zz0)nf(z)=1z0n=0(1)n(zz01)nforz∣<∣z0

Commented by tabata last updated on 25/Jul/21

thank you msr mathmax by abd thank you  very much     msr are you there tomorrow at 12 oclock  at after noon ?

thankyoumsrmathmaxbyabdthankyouverymuchmsrareyoutheretomorrowat12oclockatafternoon?

Commented by mathmax by abdo last updated on 25/Jul/21

you are welcome

youarewelcome

Terms of Service

Privacy Policy

Contact: info@tinkutara.com