All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 74890 by abdomathmax last updated on 03/Dec/19
find∫(x+3)(x−1)(2−x)dx
Commented by mathmax by abdo last updated on 04/Dec/19
letI=∫(x+3)(x−1)(2−x)dxchangementx−1=tgivex−1=t2⇒I=∫(t2+4)t2−(1+t2)(2t)dt=2∫(t2+4)t21−t2dt=t=sinu2∫(sin2u+4)sin2ucosucosudu=2∫(sin4u+4sin2u)cos2udu=2∫sin4ucos2udu+8∫sin2ucos2uduwehave∫sin2ucos2udu=14∫sin2(2u)du=14∫1−cos(4u)2du=18∫(1−cos(4u))du=u8−132sin(4u)+c=arcsint8−132sin(4arcsint)+c=arcsin(x−1)8−132sin(4arcsin(x−1))+c∫sin4ucos2udu=∫(1−cos(2u)2)2cos2udu=14∫(1−2cos(2u)+1+cos(4u)2)(1+cos(2u)2)du=116∫(3−4cos(2u)+cos(4u))(1+cos(2u))du=116∫(3−4cos(2u)+cos(4u))du+116∫(3cos(2u)−4cos2(2u)+cos(4u)cos(2u))du=3u16−18sin(2u)+164sin(4u)+332sin(2u)−14∫(1+cos(4u))du+132∫(cos(6u)+cos(2u))du=...resttofinichthecalculus....
Answered by MJS last updated on 03/Dec/19
∫(x+3)(x−1)(2−x)dx==∫(x+3)14−(x−32)2dx=[t=2x−3→dx=dt2]=18∫(t+9)1−t2dt==18∫t1−t2dt+98∫1−t2dt=[u=arcsint→dt=1−t2du]=18∫sinucos2udu+98∫cos2udu==−124cos3u+916(u+sinucosu)==−124(1−t2)32+916t1−t2+916arcsint==(124t2+916t−124)1−t2+916arcsint==(13x2+54x−6524)(x−1)(2−x)+916arcsin(2x−3)+C
Commented by mathmax by abdo last updated on 03/Dec/19
thankyousirmjs
Terms of Service
Privacy Policy
Contact: info@tinkutara.com