Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 62855 by mathmax by abdo last updated on 26/Jun/19

find ∫  ((x^4 /(1+x^6 )))^2  dx  2) calculate ∫_0 ^1    (x^8 /((1+x^6 )^2 ))dx  3) calculate ∫_0 ^(+∞)   (x^8 /((1+x^6 )^2 ))dx .

find(x41+x6)2dx2)calculate01x8(1+x6)2dx3)calculate0+x8(1+x6)2dx.

Commented by mathmax by abdo last updated on 27/Jun/19

1) let I =∫  (x^8 /((1+x^6 )^2 ))dx ⇒I =∫  (x^8 /((1+(x^3 )^2 )^2 ))dx changement x^3 =tanθ give  x =(tanθ)^(1/(3 ))  ⇒ I =∫   (((tanθ)^(8/3) )/((1+tan^2 θ)^2 )) (1/3)(1+tan^2 θ)(tanθ)^(−(2/3)) dθ  =(1/3) ∫    ((tan^2 θ)/(1+tan^2 θ)) dθ =(1/3) ∫  ((sin^2 θ)/(cos^2 θ)) cos^2 θ dθ =(1/3) ∫ sin^2 θ dθ =(1/3) ∫((1−cos(2θ))/2)dθ  =(θ/6) −(1/(12)) sin(2θ) +c   but θ =arctan(x^3 )  sin(2θ) =2sinθ cosθ =2 sin(arctan(x^3 ))cos(arctan(x^3 ))  =2 (x^3 /(√(1+x^6 ))) .(1/(√(1+x^6 ))) =((2x^3 )/(1+x^6 )) ⇒ I =(1/6) arctan(x^3 )−(1/6)(x^3 /(1+x^6 )) +c  2) ∫_0 ^1    (x^8 /((1+x^6 )^2 ))dx =(1/6)[arctan(x^3 )−(x^3 /(1+x^6 ))]_0 ^1 =(1/6){(π/4) −(1/2)}  3) ∫_0 ^∞     (x^8 /((1+x^6 )^2 ))dx =(1/6)[ arctan(x^3 )−(x^3 /(1+x^6 ))]_0 ^(+∞)  =(1/6) (π/2) =(π/(12)) .  ×

1)letI=x8(1+x6)2dxI=x8(1+(x3)2)2dxchangementx3=tanθgivex=(tanθ)13I=(tanθ)83(1+tan2θ)213(1+tan2θ)(tanθ)23dθ=13tan2θ1+tan2θdθ=13sin2θcos2θcos2θdθ=13sin2θdθ=131cos(2θ)2dθ=θ6112sin(2θ)+cbutθ=arctan(x3)sin(2θ)=2sinθcosθ=2sin(arctan(x3))cos(arctan(x3))=2x31+x6.11+x6=2x31+x6I=16arctan(x3)16x31+x6+c2)01x8(1+x6)2dx=16[arctan(x3)x31+x6]01=16{π412}3)0x8(1+x6)2dx=16[arctan(x3)x31+x6]0+=16π2=π12.×

Terms of Service

Privacy Policy

Contact: info@tinkutara.com