Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 66115 by Rio Michael last updated on 09/Aug/19

 find ∣z∣  where z = (((1+i(√3) )^3 )/((1−i)^3 ))  find the maximum value of   12sinx − 5cosx

findzwherez=(1+i3)3(1i)3findthemaximumvalueof12sinx5cosx

Commented by mathmax by abdo last updated on 09/Aug/19

∣z∣ =((∣1+i(√3)∣^3 )/(∣1−i∣^3 ))      and ∣1+i(√3)∣=(√(1+3))=2  ∣1−i∣ =(√2) ⇒∣z∣=(2^3 /(((√2))^3 )) =(2^3 /(2(√2))) =(4/(√2)) =((4(√2))/2) =2(√2)

z=1+i331i3and1+i3∣=1+3=21i=2⇒∣z∣=23(2)3=2322=42=422=22

Commented by mathmax by abdo last updated on 09/Aug/19

let f(x)=12sinx−5cosx   f is 2π periodic   f(x)=0 ⇔x=arctan((5/(12)))  f^′ (x) =12cosx +5sinx   f^′ (x)=0 ⇔12cosx +5sinx =0 ⇒5sinx =−12cosx ⇒  tanx =−((12)/5) ⇒ x =−arctan(((12)/5)) varation on [−π,π]  x       −π          −arctan(((12)/5))      0      arctan((5/(12)))           π  f(x)   5      decr           α_0         ?     −5  incr       0       inc         5  f(−arctan(((12)/5)))=−12sin(arctan(((12)/5)))−5cos(arctan(((12)/5)))  =−12 (((12)/5)/(√(1+(((12)/5))^2 ))) −5 ×(1/(√(1+(((12)/5))^2 ))) =α_0   f(arctan((5/(12))))=12sin(arctan((5/(12))))−5cos(arctan((5/(12))))  =12 ×((5/(12))/(√(1+((5/(12)))^2 )))−5×(1/(√(1+((5/(12)))^2 ))) =0  ⇒max _(x∈R) f(x)  =5

letf(x)=12sinx5cosxfis2πperiodicf(x)=0x=arctan(512)f(x)=12cosx+5sinxf(x)=012cosx+5sinx=05sinx=12cosxtanx=125x=arctan(125)varationon[π,π]xπarctan(125)0arctan(512)πf(x)5decrα0?5incr0inc5f(arctan(125))=12sin(arctan(125))5cos(arctan(125))=121251+(125)25×11+(125)2=α0f(arctan(512))=12sin(arctan(512))5cos(arctan(512))=12×5121+(512)25×11+(512)2=0maxxRf(x)=5

Commented by Rio Michael last updated on 09/Aug/19

thank you sir

thankyousir

Commented by Prithwish sen last updated on 09/Aug/19

f(x)=12sinx−5cosx  f^′ (x)=12cosx+5sinx and  f^(′′) (x)=−12sinx+5cosx  for max. and min. value  f^′ (x)=0⇒tanx= −((12)/(13))   i.e sinx = ((12)/(13)) and cosx = −(5/(13)).....(i)  or sinx = − ((12)/(13)) and cosx = (5/(13))......(ii)  for (i) f′′(x)= −13<0 i.e max.f(x)  for (ii) f′′(x)=13>0 i.e min. f(x)  ∴ max. f(x) = 12.((12)/(13)) + 5.(5/(13)) = 13

f(x)=12sinx5cosxf(x)=12cosx+5sinxandf(x)=12sinx+5cosxformax.andmin.valuef(x)=0tanx=1213i.esinx=1213andcosx=513.....(i)orsinx=1213andcosx=513......(ii)for(i)f(x)=13<0i.emax.f(x)for(ii)f(x)=13>0i.emin.f(x)max.f(x)=12.1213+5.513=13

Terms of Service

Privacy Policy

Contact: info@tinkutara.com