All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 55280 by Abdo msup. last updated on 20/Feb/19
fintf(t)=∫01ln(1+tx2)x2dx.
Commented by maxmathsup by imad last updated on 20/Feb/19
wehavef′(t)=∫01∂∂t(ln(1+tx2)x2)dx=∫011x2x21+tx2dx=∫01dx1+tx2soift⩾0wegetf′(t)=tx=u∫0tdut(1+u2)=1t[arctan(u)]0t=arctan(t)t⇒f(t)=∫0tarctan(u)udu+λλ=f(0)=0⇒f(t)=∫0tarctan(u)udu=u=x∫0tarctanxx(2x)dx=2∫0tarctanxdxbypartsf(t)=2{[xarctanx]0t−∫0tx1+x2dx}=2{tarctan(t)−[12ln(1+x2)]0t⇒f(t)=2tarctan(t)−ln(1+t).itt<0wegetf′(t)=∫01dx1−(−t)x2=∫01dx(1−−tx)(1+−tx)=12∫01(11−−tx+11+−tx)dx=12−t{∫01−t1−−tx+∫01−t1+−txdx}=12−t[ln∣1+−tx∣−ln∣1−−tx∣]x=0x=1=12−tln∣1+−t1−−t∣⇒f(t)=∫12−tln∣1+−t1−−t∣dt+c=−t=x∫12xln∣1+x1−x∣(−2x)dx+c=c−∫ln∣1+x∣dx+∫ln∣1−x∣dx
Answered by tm888 last updated on 20/Feb/19
Terms of Service
Privacy Policy
Contact: info@tinkutara.com