Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 35833 by abdo mathsup 649 cc last updated on 24/May/18

fond lim_(n→+∞)   n^a   {ln(1+e^(−n) ) −e^(−n) } with a>0

fondlimn+na{ln(1+en)en}witha>0

Commented by prof Abdo imad last updated on 25/May/18

we have for ∣x∣<1  ln^′ (1+x) =(1/(1+x)) =Σ_(n=0) ^∞ (−1)^n x^n   ⇒ ln(1+x) =Σ_(n=0) ^∞  (((−1)^n x^(n+1) )/(n+1)) =Σ_(n=1) ^∞  (((−1)^(n−1)  x^n )/n)  so  ln(1+x) = x  −(x^2 /2) +o(x^3 )(x→0)⇒  ln(1 +e^(−n) ) = e^(−n)  − (e^(−2n) /2)  +o(e^(−3n) )(n→+∞)  n^a { ln(1+e^(−n) )−e^(−n) } ∼ −(1/2)n^a  e^(−2n)  (n→+∞)  but lim_(n→+∞)  n^a  e^(−2n)  =lim_(n→+∞) e^(aln(n)−2n)   =lim_(n→+∞)   e^(n{ a((ln(n))/n) −2})  = lim_(n→+∞)  e^(−2n)  =0 so  for all a>0 lim_(n→+∞) n^a {ln(1+e^(−n) ) −e^(−n) } =0

wehaveforx∣<1ln(1+x)=11+x=n=0(1)nxnln(1+x)=n=0(1)nxn+1n+1=n=1(1)n1xnnsoln(1+x)=xx22+o(x3)(x0)ln(1+en)=ene2n2+o(e3n)(n+)na{ln(1+en)en}12nae2n(n+)butlimn+nae2n=limn+ealn(n)2n=limn+en{aln(n)n2}=limn+e2n=0soforalla>0limn+na{ln(1+en)en}=0

Answered by tanmay.chaudhury50@gmail.com last updated on 24/May/18

when n→∞  then e^(−n) →0  so given limit (∞×0) form  =((lim)/(n→∞))(({ln(1+e^(−n) )−e^(−n) })/(1/n^a )) ((0/0)) form  using lhospitsl  =((lim)/(n→∞))×(({(1/((1+e^(−n) )))×e^(−n) ×−1}−{e^(−n) ×(−1)})/(−a×n^(−a−1) ))  =((lim)/(n→∞))×(({((−e^(−n) )/(1+e^(−n)  ))}+e^(−n) )/(−a×n^(−a−1) ))  =((lim)/(n→∞))×(({−e^(−n) +e^(−n) +e^(−2n) )/((1+e^(−n) )×(−a×n^(−a−1) )))  =(((−1)/a))×((lim)/(n→∞))(e^(−2n) /(1+e^(−n) ))×n^(a+1)   =(((−1)/a))×((lim)/(n→∞))(1/(e^(2n) +e^n  ))×n^(a+1)   =(((−1)/a))×((lim)/(n→∞))(1/(e^n +1))×(n^(a+1) /e^n )  =((−/a))×((lim)/(n→∞))×((1/(e^(2n) +e^n ))/(1/n^(a+1) ))  contd

whennthenen0sogivenlimit(×0)form=limn{ln(1+en)en}1na(00)formusinglhospitsl=limn×{1(1+en)×en×1}{en×(1)}a×na1=limn×{en1+en}+ena×na1=limn×{en+en+e2n(1+en)×(a×na1)=(1a)×limne2n1+en×na+1=(1a)×limn1e2n+en×na+1=(1a)×limn1en+1×na+1en=(a)×limn×1e2n+en1na+1contd

Terms of Service

Privacy Policy

Contact: info@tinkutara.com