Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 11433 by FilupS last updated on 26/Mar/17

for r=(1/θ), show that the arc length between  θ=3π^(−1)   and θ=nπ^(−1)    (where  n>3)  is aproxiately  equal to the length of the line y=3π^(−1)   between the same bounds. Or show otherwise.

forr=1θ,showthatthearclengthbetweenθ=3π1andθ=nπ1(wheren>3)isaproxiatelyequaltothelengthoftheliney=3π1betweenthesamebounds.Orshowotherwise.

Commented by FilupS last updated on 26/Mar/17

Commented by @ANTARES_VY last updated on 26/Mar/17

what  is the  name  of  the  program..

whatisthenameoftheprogram..

Commented by FilupS last updated on 26/Mar/17

desmos

desmos

Commented by mrW1 last updated on 26/Mar/17

y=rsin θ=((sin θ)/θ)  lim_(θ→0) y=lim_(θ→0) ((sin θ)/θ)=1  that means for small θ the curve  r=(1/θ) ≈ the line y=1  is this maybe the reason for your  assumption? but it is true only for small  values of θ.

y=rsinθ=sinθθlimθ0y=limθ0sinθθ=1thatmeansforsmallθthecurver=1θtheliney=1isthismaybethereasonforyourassumption?butitistrueonlyforsmallvaluesofθ.

Commented by FilupS last updated on 26/Mar/17

This makes sense! Thanks

Thismakessense!Thanks

Answered by mrW1 last updated on 26/Mar/17

curve r=(1/θ):  (dr/dθ)=−(1/θ^2 )  (√(r^2 +((dr/dθ))^2 ))=(√((1/θ^2 )+(1/θ^4 )))=((√(1+θ^2 ))/θ^2 )  L=∫_θ_1  ^θ_2  (√(r^2 +((dr/dθ))^2 ))dθ=∫_θ_1  ^θ_2  ((√(1+θ^2 ))/θ^2 )dθ  [−((√(1+θ^2 ))/θ)+ln (θ+(√(1+θ^2 )))]_θ_1  ^θ_2    =[((√(1+θ_1 ^2 ))/θ_1 )−((√(1+θ_2 ^2 ))/θ_2 )+ln (((ϑ_2 +(√(1+θ_2 ^2 )))/(θ_1 +(√(1+θ_1 ^2 )))))]  with θ_1 =3π^(−1)  and θ_2 =nπ^(−1)       line y=3π^(−1) :  ⇒x=y×cot θ=3π^(−1) cot θ  x_1 =3π^(−1) cot θ_1   x_2 =3π^(−1) cot θ_2   L_1 =∣∫_x_1  ^x_2  (√(1+(y′)^2 ))dx∣=∣∫_x_1  ^x_2  dx∣=x_1 −x_2   =3π^(−1) (cot θ_1 −cot θ_2 )  =3π^(−1) [cot (3π^(−1) )−cot (nπ^(−1) )]    L≠L_1

curver=1θ:drdθ=1θ2r2+(drdθ)2=1θ2+1θ4=1+θ2θ2L=θ1θ2r2+(drdθ)2dθ=θ1θ21+θ2θ2dθ[1+θ2θ+ln(θ+1+θ2)]θ1θ2=[1+θ12θ11+θ22θ2+ln(ϑ2+1+θ22θ1+1+θ12)]withθ1=3π1andθ2=nπ1liney=3π1:x=y×cotθ=3π1cotθx1=3π1cotθ1x2=3π1cotθ2L1=∣x1x21+(y)2dx∣=∣x1x2dx∣=x1x2=3π1(cotθ1cotθ2)=3π1[cot(3π1)cot(nπ1)]LL1

Commented by mrW1 last updated on 26/Mar/17

Commented by ajfour last updated on 26/Mar/17

length of curve = ∫(√((rdθ)^2 +(dr)^2 ))  = ∫(√(r^2 +((dr/dθ))^2 )) dθ

lengthofcurve=(rdθ)2+(dr)2=r2+(drdθ)2dθ

Commented by mrW1 last updated on 26/Mar/17

I=∫((√(1+x^2 ))/x^2 )dx  u=(√(1+x^2 ))  u′=(x/(√(1+x^2 )))  v=−(1/x)  v^′ =(1/x^2 )  I=∫uv′dx=uv−∫vu′dx  =−((√(1+x^2 ))/x)+∫((xdx)/(x(√(1+x^2 ))))  =−((√(1+x^2 ))/x)+∫(dx/(√(1+x^2 )))  =−((√(1+x^2 ))/x)+ln (x+(√(1+x^2 )))+C

I=1+x2x2dxu=1+x2u=x1+x2v=1xv=1x2I=uvdx=uvvudx=1+x2x+xdxx1+x2=1+x2x+dx1+x2=1+x2x+ln(x+1+x2)+C

Commented by mrW1 last updated on 26/Mar/17

you are right!

youareright!

Commented by ajfour last updated on 26/Mar/17

∫(√(r^(2 ) +((dr/dθ))^2 )) =∫(√((1/θ^2 )+(1/θ^4 ))) dθ  =∫((√(1+θ^2 ))/θ^2 )dθ

r2+(drdθ)2=1θ2+1θ4dθ=1+θ2θ2dθ

Commented by ajfour last updated on 26/Mar/17

and if φ^2 =1+θ^2   φdφ =θdθ  ∫((√(1+θ^2 ))/θ^2 ) dθ = ∫(φ^2 /((φ^2 −1)^(3/2) )) d∅  otherwise if θ=cot φ  ∫((√(1+θ^2 ))/θ^2 ) dθ = −∫ ((cosec ^3 φ)/(cot^2 φ)) dφ  =∫ ((sec^2 φ)/(sin φ)) dφ    unable to integrate it..

andifϕ2=1+θ2ϕdϕ=θdθ1+θ2θ2dθ=ϕ2(ϕ21)3/2dotherwiseifθ=cotϕ1+θ2θ2dθ=cosec3ϕcot2ϕdϕ=sec2ϕsinϕdϕunabletointegrateit..

Terms of Service

Privacy Policy

Contact: info@tinkutara.com