All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 75950 by turbo msup by abdo last updated on 21/Dec/19
give∫0π2xsinxdxatformofserie.
Commented by mathmax by abdo last updated on 22/Dec/19
letA=∫0π2xsinxdxchangementtan(x2)=tgiveA=2∫01arctan(t)2t1+t22dt1+t2=2∫01arctan(t)tdtwehaveddt(arctant)=11+t2=∑n=0∞(−1)nt2n⇒arctan(t)=∑n=0∞(−1)nt2n+12n+1+c(c=0)⇒arctan(t)t=∑n=0∞(−1)n2n+1t2n⇒∫01arctan(t)tdt=∑n=0∞(−1)n(2n+1)∫01t2ndt=∑n=0∞(−1)n(2n+1)[12n+1t2n+1]01=∑n=0∞(−1)n(2n+1)2⇒A=∑n=0∞(−1)n(2n+1)2
forgiveA=2∑n=0∞(−1)n(2n+1)2
Terms of Service
Privacy Policy
Contact: info@tinkutara.com