Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 26757 by abdo imad last updated on 28/Dec/17

give the decomposition of F(x) =   (1/(x^(2n) +1))  inside C[x]  then find the value of  ∫_0 ^∞   (dx/(1+x^(2n) ))      n∈N  and n≠o

givethedecompositionofF(x)=1x2n+1insideC[x]thenfindthevalueof0dx1+x2nnNandno

Commented by abdo imad last updated on 03/Jan/18

let find the poles of  F  z^(2n) +1=0 ⇔   z^(2n)  = e^(i(2k+1)π)  so the poles of F are  z_k =  e^(i(((2k+1)π)/(2n)))   k∈[[0,2n−1]]  F(x)=  Σ_(k=0) ^(2n−1)  (λ_k /(x−z_k ))     and   λ_k  =  (1/(2n z_k ^(2n−1) )) =−(1/(2n)) z_k   F(x)= −(1/(2n))  Σ_(k=0) ^(2n−1)   (z_k /(x−z_k ))  but  z_0  = e^(i(π/(2n)))      z_0 ^− = e^(−i(π/(2n )))  = e^(i(((2π−(π/(2n))))/))   = z_(2n−1)     ,  z_1 ^−   =z_(2n−2) .....  ⇒   F(x)  =Σ_(k=0) ^(n−1) (  (z_k /(x−z_k ))  + (z_k ^− /(x−z_k ^− )) )  .

letfindthepolesofFz2n+1=0z2n=ei(2k+1)πsothepolesofFarezk=ei(2k+1)π2nk[[0,2n1]]F(x)=k=02n1λkxzkandλk=12nzk2n1=12nzkF(x)=12nk=02n1zkxzkbutz0=eiπ2nz0=eiπ2n=ei(2ππ2n)=z2n1,z1=z2n2.....F(x)=k=0n1(zkxzk+zkxzk).

Commented by abdo imad last updated on 03/Jan/18

F(x)= −(1/(2n))  Σ_(k=0) ^(n−1) (   (z_k /(x−z_k )) +  (z_k ^− /(x−z_k ^− ))  )

F(x)=12nk=0n1(zkxzk+zkxzk)

Commented by abdo imad last updated on 23/Jan/18

∫_0 ^∞   (dx/(1+x^(2n) )) = (1/2)∫_(−∞) ^(+∞)    (dx/(1+x^(2n) ))  = ((−1)/(4n))  (Σ_(k=0) ^(n−1)  z_k  ∫_R   (dx/(x−z_k ))  +Σ_(k=0) ^(n−1)  z_k ^−   ∫_R  (dx/(x−z_k ^− )) )  = ((−1)/(4n))( iπ Σ_(k=0) ^(n−1)  z_k −  iπ Σ_(k=) ^(n−1)  z_k ^−   )  = ((−1)/(4n))(−2π) Σ_(k=0) ^(n−1)  sin((((2k+1)π)/(2n)))  = (π/(2n)) Σ_(k=0) ^(n−1)  sin((((2k+1)π)/(2n))) let find  A= Σ_(k=0) ^(n−1)  sin(((2k+1)π)/(2n)))=Im( Σ_(k=0) ^(n−1)  e^(i((((2k+1)π)/(2n)))) )but  = e^(i(π/(2n)))   Σ_(k=0) ^(n−1)   (e^(i(π/n) ) )^k =  e^(i(π/(2n)))  (2/(1−e^(i(π/n)) ))  =((2 e^(i(π/(2n))) )/(1−cos((π/n))−isin((π/n)))) =   (e^(i(π/(2n))) /(sin^2 ((π/(2n))) −2isin((π/(2n)))cos((π/(2n)))))  =   ((−1)/(isin((π/(2n)))))=  (i/(sin((π/(2n))))) ⇒ A= (1/(sin((π/(2n)))))  so  ∫_0 ^∞      (dx/(1+x^(2n) ))=  (π/(2n sin((π/(2n)))))  =   ((π/(2n))/(sin((π/(2n)))))  .

0dx1+x2n=12+dx1+x2n=14n(k=0n1zkRdxxzk+k=0n1zkRdxxzk)=14n(iπk=0n1zkiπk=n1zk)=14n(2π)k=0n1sin((2k+1)π2n)=π2nk=0n1sin((2k+1)π2n)letfindA=k=0n1sin(2k+1)π2n)=Im(k=0n1ei((2k+1)π2n))but=eiπ2nk=0n1(eiπn)k=eiπ2n21eiπn=2eiπ2n1cos(πn)isin(πn)=eiπ2nsin2(π2n)2isin(π2n)cos(π2n)=1isin(π2n)=isin(π2n)A=1sin(π2n)so0dx1+x2n=π2nsin(π2n)=π2nsin(π2n).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com