Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 219404 by golsendro last updated on 24/Apr/25

  given g(x)= ((x−2023)/(x−1))    find (gogogogogog)(2024)

giveng(x)=x2023x1find(gogogogogog)(2024)

Commented by kapoorshah last updated on 25/Apr/25

g^(−1) (x)=((x−2023)/(x−1))       (g o g o g o g o g o g)(2024)  = (g o g^(−1)  o g o g^(−1)  o g o g^(−1) )(2024)  = 2024

g1(x)=x2023x1(gogogogogog)(2024)=(gog1ogog1ogog1)(2024)=2024

Commented by kapoorshah last updated on 25/Apr/25

(g o g^(−1) )(a) = a

(gog1)(a)=a

Answered by y0o0o last updated on 24/Apr/25

Answered by mehdee7396 last updated on 26/Apr/25

  f(x)=((x−a)/(x−1))⇒f(f(x))=((((x−a)/(x−1))−a)/(((x−a)/(x−1))−1))  =((x−a−ax+a)/(x−a−x+1))=(((1−a)x)/(1−a))=x    ⇒f^n (x)=f(x)   ; n=2k   &  f^n (x)=x   ; n=2k+1

f(x)=xax1f(f(x))=xax1axax11=xaax+axax+1=(1a)x1a=xfn(x)=f(x);n=2k&fn(x)=x;n=2k+1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com