All Questions Topic List
Others Questions
Previous in All Question Next in All Question
Previous in Others Next in Others
Question Number 93365 by Rio Michael last updated on 12/May/20
giventhatαisarealnumber,usemathematicalinductionorotherwisetoshowthatcos(α2)cos(α22)cos(α23)...cos(α2n)=sinα2nsin(α2n)hencefindthelimn→∞cos(α2)cos(α22)cos(α23)...cos(α2n)
Commented by mr W last updated on 12/May/20
P=cos(α2)cos(α22)cos(α23)...cos(α2n)P2sin(α2n)=cos(α2)cos(α22)cos(α23)...cos(α2n)2sin(α2n)P2sin(α2n)=cos(α2)cos(α22)cos(α23)...cos(α2n−1)sin(α2n)P22sin(α2n)=cos(α2)cos(α22)cos(α23)...cos(α2n−1)2sin(α2n)P22sin(α2n)=cos(α2)cos(α22)cos(α23)...cos(α2n−2)sin(α2n−1)P23sin(α2n)=cos(α2)cos(α22)cos(α23)...sin(α2n−2)......P2n−1sin(α2n)=cos(α2)sin(α2)P2nsin(α2n)=cos(α2)2sin(α2)P2nsin(α2n)=sin(α)⇒P=sin(α)2nsin(α2n)⇒limn→∞P=sin(α)α×(α2n)sin(α2n)=sin(α)α
Commented by Rio Michael last updated on 12/May/20
perfectsir
Q93368sirpleasecanyoutrythisone
Terms of Service
Privacy Policy
Contact: info@tinkutara.com