Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 93365 by Rio Michael last updated on 12/May/20

given that α is a real number, use mathematical induction or  otherwise to show that      cos ((α/2))cos((α/2^2 ))cos((α/2^3 )) ...cos((α/2^n )) = ((sin α)/(2^n  sin((α/2^n ))))  hence find the   lim_(n→∞)  cos((α/2))cos((α/2^2 ))cos((α/2^3 )) ... cos((α/2^n ))

giventhatαisarealnumber,usemathematicalinductionorotherwisetoshowthatcos(α2)cos(α22)cos(α23)...cos(α2n)=sinα2nsin(α2n)hencefindthelimncos(α2)cos(α22)cos(α23)...cos(α2n)

Commented by mr W last updated on 12/May/20

P=cos ((α/2))cos((α/2^2 ))cos((α/2^3 )) ...cos((α/2^n ))  P 2 sin ((α/2^n ))=cos ((α/2))cos((α/2^2 ))cos((α/2^3 )) ...cos((α/2^n ))2 sin ((α/2^n ))  P 2 sin ((α/2^n ))=cos ((α/2))cos((α/2^2 ))cos((α/2^3 )) ...cos((α/2^(n−1) )) sin ((α/2^n ))  P 2^2  sin ((α/2^n ))=cos ((α/2))cos((α/2^2 ))cos((α/2^3 )) ...cos((α/2^(n−1) ))2 sin ((α/2^n ))  P 2^2  sin ((α/2^n ))=cos ((α/2))cos((α/2^2 ))cos((α/2^3 )) ...cos((α/2^(n−2) ))sin ((α/2^(n−1) ))  P 2^3  sin ((α/2^n ))=cos ((α/2))cos((α/2^2 ))cos((α/2^3 )) ...sin ((α/2^(n−2) ))  ......  P 2^(n−1)  sin ((α/2^n ))=cos ((α/2))sin ((α/2))  P 2^n  sin ((α/2^n ))=cos ((α/2))2 sin ((α/2))  P 2^n  sin ((α/2^n ))=sin (α)  ⇒P=((sin (α))/(2^n sin ((α/2^n ))))  ⇒lim_(n→∞) P=((sin (α))/α)×((((α/2^n )))/(sin ((α/2^n ))))=((sin (α))/α)

P=cos(α2)cos(α22)cos(α23)...cos(α2n)P2sin(α2n)=cos(α2)cos(α22)cos(α23)...cos(α2n)2sin(α2n)P2sin(α2n)=cos(α2)cos(α22)cos(α23)...cos(α2n1)sin(α2n)P22sin(α2n)=cos(α2)cos(α22)cos(α23)...cos(α2n1)2sin(α2n)P22sin(α2n)=cos(α2)cos(α22)cos(α23)...cos(α2n2)sin(α2n1)P23sin(α2n)=cos(α2)cos(α22)cos(α23)...sin(α2n2)......P2n1sin(α2n)=cos(α2)sin(α2)P2nsin(α2n)=cos(α2)2sin(α2)P2nsin(α2n)=sin(α)P=sin(α)2nsin(α2n)limnP=sin(α)α×(α2n)sin(α2n)=sin(α)α

Commented by Rio Michael last updated on 12/May/20

perfect sir

perfectsir

Commented by Rio Michael last updated on 12/May/20

Q93368  sir pleasecan you try this one

Q93368sirpleasecanyoutrythisone

Terms of Service

Privacy Policy

Contact: info@tinkutara.com