Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 210639 by ChantalYah last updated on 14/Aug/24

given that the roots   of the equation  3x^2 −(4+2k)x+2k=0  are α and β  find the value of k  for which β=3α

giventhattherootsoftheequation3x2(4+2k)x+2k=0areαandβfindthevalueofkforwhichβ=3α

Answered by Rasheed.Sindhi last updated on 14/Aug/24

α+β=α+3α=4α=((4+2k)/3)⇒α^2 =(((2+k)/6))^2   αβ=α.3α=3α^2 =((2k)/3)⇒α^2 =((2k)/9)  (((2+k)/6))^2 =((2k)/9)  ((k^2 +4k+4)/4)=2k  k^2 −4k+4=0  (k−2)^2 =0⇒k=2

α+β=α+3α=4α=4+2k3α2=(2+k6)2αβ=α.3α=3α2=2k3α2=2k9(2+k6)2=2k9k2+4k+44=2kk24k+4=0(k2)2=0k=2

Answered by mm1342 last updated on 14/Aug/24

3(x−α)(x−3α)=0  ⇒3x^2 −12αx+9α^2 =0  ⇒4+2k=12α  &  2k=9α^2   ⇒9α^2 −12α+4=0  ⇒α=(2/3)⇒k=2 ✓

3(xα)(x3α)=03x212αx+9α2=04+2k=12α&2k=9α29α212α+4=0α=23k=2

Answered by Rasheed.Sindhi last updated on 14/Aug/24

 { ((3α^2 −(4+2k)α+2k=0)),((3(3α)^2 −(4+2k)(3α)+2k=0)) :}    { ((3α^2 −(4+2k)α+2k=0...(i))),((27α^2 −3(4+2k)α+2k=0...(ii))) :}   (ii)−(i): 24α^2 −2(4+2k)α=0               12α−(4+2k)=0 ; α≠0                 α=((2+k)/6)  (ii)−9(i): 6(4+2k)α−16k=0       6(4+2k)(((2+k)/6))−16k=0         (2+k)^2 −8k=0         k^2 −4k+4=0        (k−2)^2 =0⇒k=2

{3α2(4+2k)α+2k=03(3α)2(4+2k)(3α)+2k=0{3α2(4+2k)α+2k=0...(i)27α23(4+2k)α+2k=0...(ii)(ii)(i):24α22(4+2k)α=012α(4+2k)=0;α0α=2+k6(ii)9(i):6(4+2k)α16k=06(4+2k)(2+k6)16k=0(2+k)28k=0k24k+4=0(k2)2=0k=2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com