All Questions Topic List
Others Questions
Previous in All Question Next in All Question
Previous in Others Next in Others
Question Number 66562 by Rio Michael last updated on 17/Aug/19
giventhat∣z−i∣=∣z−4+3i∣sketchthelocusofzfindthecatersianequationofthislocus.
Commented by mathmax by abdo last updated on 17/Aug/19
letz=x+iywehave∣z−i∣=∣z−4+3i∣⇔∣x+iy−i∣=∣x+iy−4+3i∣⇔∣x+i(y−1)∣=∣x−4+i(y+3)∣⇔x2+(y−1)2=(x−4)2+(y+3)2⇔x2+y2−2y+1=x2−8x+16+y2+6y+9⇔−2y+1=−8x+6y+25⇔−2y+1+8x−6y−25=0⇔8x−8y−24=0⇔x−y−3=0sothelocusisaline.
Answered by mr W last updated on 17/Aug/19
∣z−i∣=∣z−4+3i∣meansthedistancefromthevariablepointP(x,y)tothepointA(0,1)isequaltothedistancefromPtothepointB(4,−3).thelocusofpointPisthereforetheperpendicularbisectorofAB,i.e.thelocusisaline.z=x+yi∣z−i∣=x2+(y−1)2∣z−4+3i∣=(x−4)2+(y+3)2⇒x2+(y−1)2=(x−4)2+(y+3)2⇒y=x−3←eqn.oflocus
Commented by Rio Michael last updated on 17/Aug/19
thankssomuchsir
Terms of Service
Privacy Policy
Contact: info@tinkutara.com