Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 219414 by universe last updated on 24/Apr/25

   given the recursive {a_n } define by setting    a_(1 )  ∈ (0,1)   ,    a_(n+1)  = a_n (1−a_n )   , n≥1    prove that  (1)   lim_(n→∞)  na_n = 1    (2)  b_n  = n(1−na_n ) is a incresing sequence     and diverge to ∞     (3) lim_(n→∞)  ((n(1−na_n ))/(ln(n))) = 1

giventherecursive{an}definebysettinga1(0,1),an+1=an(1an),n1provethat(1)limnnan=1(2)bn=n(1nan)isaincresingsequenceanddivergeto(3)limnn(1nan)ln(n)=1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com