All Questions Topic List
Relation and Functions Questions
Previous in All Question Next in All Question
Previous in Relation and Functions Next in Relation and Functions
Question Number 208431 by alcohol last updated on 15/Jun/24
ha(x)=e−x+ax2showthathaadmitsaminimuminR
Answered by mathzup last updated on 15/Jun/24
cas1a>0limx→−∞h(x)=+∞limx→+∞h(x)=+∞h′(x)=2ax−e−xlimx→−∞h′(x)=−∞limx→+∞h′(x)=+∞h(2)(x)=2a+e−x>0⇒h′eststrictementcroissantex−∞0α+∞h′(x)−∞→−1→0+∞⇒∃α/h′(α)=0x−∞α+∞h′−0+hdecrh(α)croidonchpossedeunminimunquiesth(α)=e−α+aα2h(0)=−1andh(1)=e−1+a>0⇒α∈]0,1[restaetudierlescasa<0eta=0
Answered by Frix last updated on 16/Jun/24
It′snottruefor−e2⩽a⩽0a<−e2⇒1localminplus1localmaxa=−e2⇒1saddlepoint[horizontaltangent=1pointwitha]−e2<a⩽0⇒nomin/maxatalla>0⇒1absolutemin
Terms of Service
Privacy Policy
Contact: info@tinkutara.com