Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 21268 by oyshi last updated on 18/Sep/17

if A+B+C=π  so proof   sin A+sin B+sin C=4cos (A/2)cos (B/2)cos (C/2)

ifA+B+C=πsoproofsinA+sinB+sinC=4cosA2cosB2cosC2

Answered by myintkhaing last updated on 18/Sep/17

L.H.S= sin A+sin B+sin C  =2sin ((A+B)/2) cos((A−B)/2)+2sin (C/2) cos (C/2)  =2sin((π/2)−(C/2))cos(((A−B)/2))+2sin((π/2)−((A+B)/2))cos (C/2)  =2cos (C/2) cos(((A−B)/2))+2cos(((A+B)/2))cos (C/2)  =2(cos ((A+B)/2)+cos((A−B)/2)) cos (C/2)  =2(2cos (A/2)cos (B/2))cos (C/2)  =4cos(A/2) cos (B/2) cos (C/2) #  use  A+B = π−C⇒((A+B)/2) = (π/2)−(C/2)  sin x+ sin y = 2sin ((x+y)/2)cos ((x−y)/2)  cos x+ cos y = 2cos ((x+y)/2) cos ((x−y)/2)

L.H.S=sinA+sinB+sinC=2sinA+B2cosAB2+2sinC2cosC2=2sin(π2C2)cos(AB2)+2sin(π2A+B2)cosC2=2cosC2cos(AB2)+2cos(A+B2)cosC2=2(cosA+B2+cosAB2)cosC2=2(2cosA2cosB2)cosC2You can't use 'macro parameter character #' in math modeuseA+B=πCA+B2=π2C2sinx+siny=2sinx+y2cosxy2cosx+cosy=2cosx+y2cosxy2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com