Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 100216 by Rio Michael last updated on 25/Jun/20

if I = ∫_0 ^(π/2) ((sin x)/(sin x + cos x))dx = ∫_0 ^(π/2) ((cos x)/(sin x +cos x))dx   then I = ??

ifI=0π2sinxsinx+cosxdx=0π2cosxsinx+cosxdxthenI=??

Commented by Dwaipayan Shikari last updated on 25/Jun/20

(π/4)   (I think it should be)

π4(Ithinkitshouldbe)

Commented by Dwaipayan Shikari last updated on 25/Jun/20

∫_0 ^(π/2) ((sinx)/(sinx+cosx))dx=∫_0 ^(π/2) ((sin((π/2)−x))/(sin((π/2)−x)+cos((π/2)−x)))dx=∫_0 ^(π/2) ((cosx)/(sinx+cosx))dx=I     so,  2I=∫_0 ^(π/2) ((sinx+cosx)/(sinx+cosx))dx=(π/2)  So,     I=(π/4)

0π2sinxsinx+cosxdx=0π2sin(π2x)sin(π2x)+cos(π2x)dx=0π2cosxsinx+cosxdx=Iso,2I=0π2sinx+cosxsinx+cosxdx=π2So,I=π4

Answered by Ar Brandon last updated on 25/Jun/20

 { ((I=∫_0 ^(π/2) ((sinx)/(sinx+cosx))dx..........(1))),((I=∫_0 ^(π/2) ((cosx)/(sinx+cosx))dx...........(2))) :}⇒I+I=∫_0 ^(π/2) ((sinx+cosx)/(sinx+cosx))dx  ⇒2I=∫_0 ^(π/2) dx=(π/2)⇒I=(π/4)

{I=0π2sinxsinx+cosxdx..........(1)I=0π2cosxsinx+cosxdx...........(2)I+I=0π2sinx+cosxsinx+cosxdx2I=0π2dx=π2I=π4

Commented by Coronavirus last updated on 25/Jun/20

clean

clean

Commented by Ar Brandon last updated on 25/Jun/20

Ouais

Commented by Rio Michael last updated on 26/Jun/20

thank you′ll

thankyoull

Terms of Service

Privacy Policy

Contact: info@tinkutara.com