All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 116560 by Bird last updated on 04/Oct/20
ifarctan(x+iy)=a+ibwithaandbrealsdetermineaandb
Commented by MJS_new last updated on 05/Oct/20
arctan(x+iy)=a+iba=π2signx+12(arctany−1x−arctany+1x)b=14lnx2+(y+1)2x2+(y−1)2ifx=0a=real(i2ln1+y1−y)b=imag(i2ln1+y1−y)
Answered by Olaf last updated on 05/Oct/20
x+iy=tan(a+ib)x+iy=tana+tanib1−tanatanibtanib=sinibcosibtanib=ei(ib)−e−i(ib)2iei(ib)+e−i(ib)2=−ie−b−eibe−ib+eibtanib=ieb−e−ibeib+e−ib=isinhbcoshb=itanhbx+iy=tana+itanhb1−itanatanhbx+iy=(tana+itanhb)(1+itanatanhb)1+tan2atanh2bx+iy=tana(1−tanh2b)+itanhb(1+tan2a)1+tan2atanh2byx=tanhb(1+tan2a)tana(1−tanh2b)yx=tanhbcosh2btanacos2a=sinhbcoshbsinacosayx=tanhbcosh2btanacos2a=sinh2bsin2a(1)x2+y2=tan2acosh4b+tanh2bcos4ax2+y2=sin2acos2a+sinh2bcosh2bcos4acosh4bx2+y2=sin22a+sinh22b4cos4acosh4b(2)workinprogress...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com