Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 210574 by ChantalYah last updated on 13/Aug/24

if the roots of the equation   x^2 +(k+1)x+k=0  are α and β,   find the value of the   real constant k for  which α=2β

iftherootsoftheequationx2+(k+1)x+k=0areαandβ,findthevalueoftherealconstantkforwhichα=2β

Answered by mr W last updated on 13/Aug/24

α+β=−(k+1) ⇒3β=−(k+1)  αβ=k ⇒2β^2 =k  ⇒2(−((k+1)/3))^2 =k  ⇒2k^2 −5k+2=0  ⇒(k−2)(2k−1)=0  ⇒k=2, (1/2) ✓

α+β=(k+1)3β=(k+1)αβ=k2β2=k2(k+13)2=k2k25k+2=0(k2)(2k1)=0k=2,12

Answered by Rasheed.Sindhi last updated on 13/Aug/24

Another way  Roots are 2β and β   { (((2β)^2 +(k+1)(2β)+k=0)),((β^2 +(k+1)β+k=0)) :}    { ((4β^2 +2(k+1)β+k=0...(i))),((β^2 +(k+1)β+k=0...(ii))) :}   (i)−(ii): 3β^2 +(k+1)β=0            3β+k+1=0  ; β≠0           β=−((k+1)/3)  4(ii)−(i): 2(k+1)β+3k=0  β=−((k+1)/3) ⇒2(k+1)(−((k+1)/3))+3k=0  −2(k+1)^2 +9k=0  2(k+1)^2 −9k=0  2k^2 −5k+2=0  (k−2)(2k−1)=0  k=2,(1/2)

AnotherwayRootsare2βandβ{(2β)2+(k+1)(2β)+k=0β2+(k+1)β+k=0{4β2+2(k+1)β+k=0...(i)β2+(k+1)β+k=0...(ii)(i)(ii):3β2+(k+1)β=03β+k+1=0;β0β=k+134(ii)(i):2(k+1)β+3k=0β=k+132(k+1)(k+13)+3k=02(k+1)2+9k=02(k+1)29k=02k25k+2=0(k2)(2k1)=0k=2,12

Answered by Rasheed.Sindhi last updated on 13/Aug/24

Still another way  x^2 +(k+1)x+k=0  x^2 +kx+x+k=0  x(x+k)+(x+k)=0  (x+k)(x+1)=0  x=−k ∨ x=−1  −k=2(−1) ∨ −1=2(−k)  k=2 ∨ k=(1/2)

Stillanotherwayx2+(k+1)x+k=0x2+kx+x+k=0x(x+k)+(x+k)=0(x+k)(x+1)=0x=kx=1k=2(1)1=2(k)k=2k=12

Terms of Service

Privacy Policy

Contact: info@tinkutara.com