All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 210574 by ChantalYah last updated on 13/Aug/24
iftherootsoftheequationx2+(k+1)x+k=0areαandβ,findthevalueoftherealconstantkforwhichα=2β
Answered by mr W last updated on 13/Aug/24
α+β=−(k+1)⇒3β=−(k+1)αβ=k⇒2β2=k⇒2(−k+13)2=k⇒2k2−5k+2=0⇒(k−2)(2k−1)=0⇒k=2,12✓
Answered by Rasheed.Sindhi last updated on 13/Aug/24
AnotherwayRootsare2βandβ{(2β)2+(k+1)(2β)+k=0β2+(k+1)β+k=0{4β2+2(k+1)β+k=0...(i)β2+(k+1)β+k=0...(ii)(i)−(ii):3β2+(k+1)β=03β+k+1=0;β≠0β=−k+134(ii)−(i):2(k+1)β+3k=0β=−k+13⇒2(k+1)(−k+13)+3k=0−2(k+1)2+9k=02(k+1)2−9k=02k2−5k+2=0(k−2)(2k−1)=0k=2,12
Stillanotherwayx2+(k+1)x+k=0x2+kx+x+k=0x(x+k)+(x+k)=0(x+k)(x+1)=0x=−k∨x=−1−k=2(−1)∨−1=2(−k)k=2∨k=12
Terms of Service
Privacy Policy
Contact: info@tinkutara.com