Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 53378 by Necxx last updated on 21/Jan/19

if u=e^(xyz)  then u_(xyx) =?  a)u((xyz)^2 +3xyz+1) b)u(3(xyz)^2 +1)  c)u((xyz)^2 +2yz+1)    please help

ifu=exyzthenuxyx=?a)u((xyz)2+3xyz+1)b)u(3(xyz)2+1)c)u((xyz)2+2yz+1)pleasehelp

Answered by tanmay.chaudhury50@gmail.com last updated on 21/Jan/19

u=e^(xyz)   u_x =e^(xyz) ×(∂/∂x)(xyz)=yze^(xyx)   u_(xy) =(∂/∂y)(yze^(xyz) )=e^(xyz) ×z(∂/∂y)(y)+yz×(∂/∂y)(e^(xyz) )                                   =ze^(xyz) +yz×e^(xyz) ×xz                                   =e^(xyz) (z+xyz^2 )           u_(xyz) =e^(xyz) ×(∂/∂z)(z+xyz^2 )+(z+xyz^2 )×(∂/∂z)(e^(xyz) )     =e^(xyz) ×(1+2xyz)+(z+xyz^2 )×e^(xyz) (xy)  =u[1+2xyz+xyz+x^2 y^2 z^2 ]  =u[1+3xyz+x^2 y^2 z^2 ]  so option a is correct

u=exyzux=exyz×x(xyz)=yzexyxuxy=y(yzexyz)=exyz×zy(y)+yz×y(exyz)=zexyz+yz×exyz×xz=exyz(z+xyz2)uxyz=exyz×z(z+xyz2)+(z+xyz2)×z(exyz)=exyz×(1+2xyz)+(z+xyz2)×exyz(xy)=u[1+2xyz+xyz+x2y2z2]=u[1+3xyz+x2y2z2]sooptionaiscorrect

Commented by Necxx last updated on 21/Jan/19

exactly..... Thanks so much

exactly.....Thankssomuch

Terms of Service

Privacy Policy

Contact: info@tinkutara.com