All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 111813 by mathdave last updated on 05/Sep/20
ifψ(x)=x1−x+x31−x2+x51−x5+x71−x7showthat∫01[ψ(x)+ψ(x3)+ψ(x5)+ψ(x7)]ln(1x)x=25832π21575soltionletthegeneratingseriesformofψ(x)=x1−x+x31−x2+x51−x5+x71−x7beψ(x)=∑∞i=0x2i+11−x2i+1.........(1)fromΩ=∫01ψ(x)+ψ(x3)+ψ(x5)+ψ(x7)ln(1x)xdxΩ=−∫01[ψ(x)+ψ(x13)+ψ(x15)+ψ(x17)]lnxxdxtheretheseriesformbeΩ=∫01[∑∞n=0ψ(x12n+1)lnxx]dx.........(2)puttingequation(1)into(2)Ω=−∫01∑∞n=0∑∞i=0[(x2i+1.x12n+11−x2i+1.x12n+1)lnxx]dxΩ=−∑∞n=0∑∞i=0∫01[(x2i+12n+11−x2i+12n+1)lnxx]dxlety=2i+12n+1Ω=−∑∞n=0∑∞i=0∫01[(xy1−xy)lnxx]dx=−∑∞n=0∑∞i=0∫01(xy−11−xy)lnxdxlettheseriesformof11−xy=∑∞m=0xmyΩ=−∑∞n=0∑∞i=0∫01(∑∞m=0xmy.xy−1lnx)dx∂∂a∣a=0Ω(a)=−∑∞n=0∑∞i=0∑∞m=0∫01(xmy.xy−1.xa)dx∂∂a∣a=0Ω(a)=−∑∞n=0∑∞i=0∑∞m=0∫01xmy+y+a−1dx∂∂a∣a=0Ω(a)=−∑∞n=0∑∞i=0∑∞m=0(1my+y+a)Ω′(0)=∑∞n=0∑∞i=0∑∞m=0[1(my+y)2]=(∑∞n=0∑∞i=0)1y2∑∞m=01(1+m)2letz=1+matm=0,z=1Ω(0)=(∑∞n=0∑∞i=0)1y2∑∞z=11z2=(∑∞n=0∑∞i=0)1y2ζ(2)=π26(∑∞n=0∑∞i=0)1y2buty=2i+12n+1Ω(0)=π26(∑∞n=0∑∞i=01(2i+12n+1)2)=π26∑∞n=0(2n+1)2∑∞i=01(2i+1)2Ω=π26[12+32+52+72]×[112+132+152+172]Ω=π26(1+9+25+49)×[11+19+125+149]Ω=π26∙(84)∙1291611025=25832π21575∵∫01[ψ(x)+ψ(x3)+ψ(x5)+ψ(x7)]ln(1x)x=25832π21575bymathewmonday(05/09/2020)
Commented by mnjuly1970 last updated on 05/Sep/20
veryexcellentandverycontentful...p.b.u.y
Commented by Don08q last updated on 05/Sep/20
Goodjob
Commented by Tawa11 last updated on 06/Sep/21
greatsir
Terms of Service
Privacy Policy
Contact: info@tinkutara.com