Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 111813 by mathdave last updated on 05/Sep/20

if   ψ(x)=(x/(1−x))+(x^3 /(1−x^2 ))+(x^5 /(1−x^5 ))+(x^7 /(1−x^7 ))  show that   ∫_0 ^1 [ψ(x)+ψ((x)^(1/3) )+ψ((x)^(1/5) )+ψ((x)^(1/7) )]((ln((1/x)))/x)=((25832π^2 )/(1575))  soltion   let the generating series form of  ψ(x)=(x/(1−x))+(x^3 /(1−x^2 ))+(x^5 /(1−x^5 ))+(x^7 /(1−x^7 ))  be ψ(x)=Σ_(i=0) ^∞ (x^(2i+1) /(1−x^(2i+1) )).........(1)  from Ω=∫_0 ^1 ψ(x)+ψ((x)^(1/3) )+ψ((x)^(1/5) )+ψ((x)^(1/7) )((ln((1/x)))/x)dx  Ω=−∫_0 ^1 [ψ(x)+ψ(x^(1/3) )+ψ(x^(1/5) )+ψ(x^(1/7) )]((lnx)/x)dx  there the series form be  Ω=∫_0 ^1 [Σ_(n=0) ^∞ ψ(x^(1/(2n+1)) )((lnx)/x)]dx.........(2)  putting equation (1) into (2)  Ω=−∫_0 ^1 Σ_(n=0) ^∞ Σ_(i=0) ^∞ [(((x^(2i+1) .x^(1/(2n+1)) )/(1−x^(2i+1) .x^(1/(2n+1)) )))((lnx)/x)]dx  Ω=−Σ_(n=0) ^∞ Σ_(i=0) ^∞ ∫_0 ^1 [((x^((2i+1)/(2n+1)) /(1−x^((2i+1)/(2n+1)) )))((lnx)/x)]dx  let y=((2i+1)/(2n+1))  Ω=−Σ_(n=0) ^∞ Σ_(i=0) ^∞ ∫_0 ^1 [((x^y /(1−x^y )))((lnx)/x)]dx=−Σ_(n=0) ^∞ Σ_(i=0) ^∞ ∫_0 ^1 ((x^(y−1) /(1−x^y )))lnxdx  let the series form of   (1/(1−x^y ))=Σ_(m=0) ^∞ x^(my)   Ω=−Σ_(n=0) ^∞ Σ_(i=0) ^∞ ∫_0 ^1 (Σ_(m=0) ^∞ x^(my) .x^(y−1) lnx)dx  (∂/∂a)∣_(a=0) Ω(a)=−Σ_(n=0) ^∞ Σ_(i=0) ^∞ Σ_(m=0) ^∞ ∫_0 ^1 (x^(my) .x^(y−1) .x^a )dx  (∂/∂a)∣_(a=0) Ω(a)=−Σ_(n=0) ^∞ Σ_(i=0) ^∞ Σ_(m=0) ^∞ ∫_0 ^1 x^(my+y+a−1) dx  (∂/∂a)∣_(a=0) Ω(a)=−Σ_(n=0) ^∞ Σ_(i=0) ^∞ Σ_(m=0) ^∞ ((1/(my+y+a)))  Ω^′ (0)=Σ_(n=0) ^∞ Σ_(i=0) ^∞ Σ_(m=0) ^∞ [(1/((my+y)^2 ))]=(Σ_(n=0) ^∞ Σ_(i=0) ^∞ )(1/y^2 )Σ_(m=0) ^∞ (1/((1+m)^2 ))  let z=1+m at m=0  ,z=1  Ω(0)=(Σ_(n=0) ^∞ Σ_(i=0) ^∞ )(1/y^2 )Σ_(z=1) ^∞ (1/z^2 )=(Σ_(n=0) ^∞ Σ_(i=0) ^∞ )(1/y^2 )ζ(2)=(π^2 /6)(Σ_(n=0) ^∞ Σ_(i=0) ^∞ )(1/y^2 )  but y=((2i+1)/(2n+1))  Ω(0)=(π^2 /6)(Σ_(n=0) ^∞ Σ_(i=0) ^∞ (1/((((2i+1)/(2n+1)))^2 )))=(π^2 /6)Σ_(n=0) ^∞ (2n+1)^2 Σ_(i=0) ^∞ (1/((2i+1)^2 ))  Ω=(π^2 /6)[1^2 +3^2 +5^2 +7^2 ]×[(1/1^2 )+(1/3^2 )+(1/5^2 )+(1/7^2 )]  Ω=(π^2 /6)(1+9+25+49)×[(1/1)+(1/9)+(1/(25))+(1/(49))]  Ω=(π^2 /6)•(84)•((12916)/(11025))=((25832π^2 )/(1575))  ∵∫_0 ^1 [ψ(x)+ψ((x)^(1/3) )+ψ((x)^(1/5) )+ψ((x)^(1/7) )]((ln((1/x)))/x)=((25832π^2 )/(1575))  by mathew monday(05/09/2020)

ifψ(x)=x1x+x31x2+x51x5+x71x7showthat01[ψ(x)+ψ(x3)+ψ(x5)+ψ(x7)]ln(1x)x=25832π21575soltionletthegeneratingseriesformofψ(x)=x1x+x31x2+x51x5+x71x7beψ(x)=i=0x2i+11x2i+1.........(1)fromΩ=01ψ(x)+ψ(x3)+ψ(x5)+ψ(x7)ln(1x)xdxΩ=01[ψ(x)+ψ(x13)+ψ(x15)+ψ(x17)]lnxxdxtheretheseriesformbeΩ=01[n=0ψ(x12n+1)lnxx]dx.........(2)puttingequation(1)into(2)Ω=01n=0i=0[(x2i+1.x12n+11x2i+1.x12n+1)lnxx]dxΩ=n=0i=001[(x2i+12n+11x2i+12n+1)lnxx]dxlety=2i+12n+1Ω=n=0i=001[(xy1xy)lnxx]dx=n=0i=001(xy11xy)lnxdxlettheseriesformof11xy=m=0xmyΩ=n=0i=001(m=0xmy.xy1lnx)dxaa=0Ω(a)=n=0i=0m=001(xmy.xy1.xa)dxaa=0Ω(a)=n=0i=0m=001xmy+y+a1dxaa=0Ω(a)=n=0i=0m=0(1my+y+a)Ω(0)=n=0i=0m=0[1(my+y)2]=(n=0i=0)1y2m=01(1+m)2letz=1+matm=0,z=1Ω(0)=(n=0i=0)1y2z=11z2=(n=0i=0)1y2ζ(2)=π26(n=0i=0)1y2buty=2i+12n+1Ω(0)=π26(n=0i=01(2i+12n+1)2)=π26n=0(2n+1)2i=01(2i+1)2Ω=π26[12+32+52+72]×[112+132+152+172]Ω=π26(1+9+25+49)×[11+19+125+149]Ω=π26(84)1291611025=25832π2157501[ψ(x)+ψ(x3)+ψ(x5)+ψ(x7)]ln(1x)x=25832π21575bymathewmonday(05/09/2020)

Commented by mnjuly1970 last updated on 05/Sep/20

very excellent and very  contentful...p.b.u.y

veryexcellentandverycontentful...p.b.u.y

Commented by Don08q last updated on 05/Sep/20

Good job

Goodjob

Commented by Tawa11 last updated on 06/Sep/21

great sir

greatsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com