Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 105488 by 175mohamed last updated on 29/Jul/20

if y = cos(x^2 )      then         y^((n))  = .........

ify=cos(x2)theny(n)=.........

Answered by mathmax by abdo last updated on 29/Jul/20

y(x) =cos(x^2 ) =((e^(ix^2 ) +e^(−ix^2 ) )/2) ⇒y^((n)) (x) =(1/2)(e^(ix^2 ) )^((n))  +(1/2)(e^(−ix^2 ) )^()n))   let w(x) =(e^(ix^2 ) )  we have w^((1)) (x) =2ix e^(ix^2 )   w^((2)) (x) =2i e^(ix^2 )   +2ix(2ix) e^(ix^2 )  =(−4x^2  +2i)e^(ix^2 )  ⇒  w^((n))  =p_n (x) e^(ix^2 )   with p_n  ∈ C[x]  we have  w^((n+1)) (x) =p_n ^′ (x)e^(ix^2 )   +2ix p_n (x)e^(ix^2 )  =(2ip_n (x)+p_n ^′ (x))e^(ix^2 )  ⇒  ⇒p_(n+1) (x) =2ip_n (x)+p_n ^′ (x)  let ϕ(x) =e^(−ix^2 )  ⇒ϕ^((1)) (x) =−2ix e^(−ix^2 )  and  ϕ^((2)) (x) =−2i e^(−ix^2 )  +(−2ix)(−2ix) e^(−ix^2 )  =(−4x^2 −2i)e^(−ix^2  )  ⇒  ϕ^((n)) (x) =q_n (x)e^(−ix^2 )   (q_n  ∈C [x])  we have ϕ^((n+1)) (x) =q_n ^′ (x)e^(−ix^2 ) −2ixq_n (x)e^(−ix^2 )   =(q_n ^′ (x)−2iq_n (x))e^(−ix^2 )  ⇒q_(n+1) =q_n ^(′ )  −2iq_n (x) and we get  y^((n)) (x) =w^((n)) (x)+ϕ^((n)) (x)

y(x)=cos(x2)=eix2+eix22y(n)(x)=12(eix2)(n)+12(eix2))n)letw(x)=(eix2)wehavew(1)(x)=2ixeix2w(2)(x)=2ieix2+2ix(2ix)eix2=(4x2+2i)eix2w(n)=pn(x)eix2withpnC[x]wehavew(n+1)(x)=pn(x)eix2+2ixpn(x)eix2=(2ipn(x)+pn(x))eix2pn+1(x)=2ipn(x)+pn(x)letφ(x)=eix2φ(1)(x)=2ixeix2andφ(2)(x)=2ieix2+(2ix)(2ix)eix2=(4x22i)eix2φ(n)(x)=qn(x)eix2(qnC[x])wehaveφ(n+1)(x)=qn(x)eix22ixqn(x)eix2=(qn(x)2iqn(x))eix2qn+1=qn2iqn(x)andwegety(n)(x)=w(n)(x)+φ(n)(x)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com