Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 37902 by math khazana by abdo last updated on 19/Jun/18

ind the value of f(a)  =∫_0 ^(+∞)    (dx/(x^2  +(√(a^2  +x^2 )))) dx  witha>0  2)calculate f^′ (a) .

indthevalueoff(a)=0+dxx2+a2+x2dxwitha>02)calculatef(a).

Commented by prof Abdo imad last updated on 19/Jun/18

changement x=a tan t give  f(a) = ∫_0 ^(π/2)      (1/(a^2 tan^2 t  + a cost)) a(1+tan^2 t)dt  = ∫_0 ^(π/2)     ((1+tan^2 t)/(a tant +cost)) dt  chang. tan((t/2))=u  give  f(a) = ∫_0 ^1     ((1+( ((2u)/(1−u^2 )))^2 )/(a ((2u)/(1−u^2 ))  +((1−u^2 )/(1+u^2 ))))  ((2du)/(1+u^2 ))  = 2 ∫_0 ^1        (((1−u^2 )^2  +4u^2 )/((1+u^2 )(1−u^2 )^2 { ((2au)/(1−u^2 )) +((1−u^2 )/(1+u^2 ))}))du  = 2 ∫_0 ^1      (((1−u^2 )^2  +4u^2 )/(2au(1−u^4 ) +(1−u^2 )^3 )) du  =2 ∫_0 ^1    (((1+u^2 )^2 )/(2au −2au^5   −(u^(6 )  +3u^4  −3u^2 −1)))du  =2∫_0 ^1      ((u^4  +2u^(2 )  +1)/(−u^6  −2au^5  +3u^2  +2au +1))du  =−2 ∫_0 ^1     ((u^4  +2u^2  +1)/(u^6  +2au^5  −3u^2  −2au −1))du...be  continued...

changementx=atantgivef(a)=0π21a2tan2t+acosta(1+tan2t)dt=0π21+tan2tatant+costdtchang.tan(t2)=ugivef(a)=011+(2u1u2)2a2u1u2+1u21+u22du1+u2=201(1u2)2+4u2(1+u2)(1u2)2{2au1u2+1u21+u2}du=201(1u2)2+4u22au(1u4)+(1u2)3du=201(1+u2)22au2au5(u6+3u43u21)du=201u4+2u2+1u62au5+3u2+2au+1du=201u4+2u2+1u6+2au53u22au1du...becontinued...

Answered by ajfour last updated on 19/Jun/18

let x=atan θ    f(a)=∫_0 ^(  π/2) ((sec^2 θdθ)/(atan^2 θ+sec θ))       =∫_0 ^(  π/2) (dθ/(asin^2 θ+cos θ))      let tan (θ/2)=t       =∫_0 ^(  1) (((2dt)/(1+t^2 ))/(a(((2t)/(1+t^2 )))^2 +((1−t^2 )/(1+t^2 ))))      = ∫_0 ^(  1) ((2(1+t^2 )dt)/(4at^2 +1−t^4 ))  let   t^4 −4at^2 +1=0  ⇒    t^2 =((4a±(√(16a^2 −4)))/2)      say   α, β  = 2a±(√(4a^2 −1))  f(a)=−∫_0 ^(  1) ((1+t^2 )/((t^2 −α)(t^2 −β)))dt     =−((α+1)/(α−β))∫_0 ^(  1) (dt/(t^2 −α))+((1+β)/(α−β))∫_0 ^(  1) (dt/(t^2 −β))    =−((α+1)/(α−β))×(1/(2(√α)))ln ∣((t−(√α))/(t+(√α)))∣_0 ^1                     +((1+β)/(α−β))×(1/(2(√β)))ln ∣((t−(√β))/(t+(√β)))∣_0 ^1        not satisfactory, i guess !

letx=atanθf(a)=0π/2sec2θdθatan2θ+secθ=0π/2dθasin2θ+cosθlettanθ2=t=012dt1+t2a(2t1+t2)2+1t21+t2=012(1+t2)dt4at2+1t4lett44at2+1=0t2=4a±16a242sayα,β=2a±4a21f(a)=011+t2(t2α)(t2β)dt=α+1αβ01dtt2α+1+βαβ01dtt2β=α+1αβ×12αlntαt+α01+1+βαβ×12βlntβt+β01notsatisfactory,iguess!

Commented by tanmay.chaudhury50@gmail.com last updated on 19/Jun/18

∫_0 ^1 ((2((1/t^2 )+1)dt)/(4a+(1/t^2 )−t^2 ))  ∫_0 ^1 ((2d(t−(1/t)))/(4a−(t−(1/t))(t+(1/t))))  2∫_0 ^1 ((d(t−(1/t)))/(4a−(t−(1/t))(√((t−(1/t))^2 +4))))  2∫_(−∞) ^0 (dk/(4a−k(√(k^2 +4))))  contd

012(1t2+1)dt4a+1t2t2012d(t1t)4a(t1t)(t+1t)201d(t1t)4a(t1t)(t1t)2+420dk4akk2+4contd

Answered by MJS last updated on 19/Jun/18

this is the method:    ∫(dx/(x^2 +(√(x^2 +a^2 ))))=∫(x^2 /(x^4 −x^2 −a^2 ))dx−∫((√(x^2 +a^2 ))/(x^4 −x^2 −a^2 ))dx       ∫(x^2 /(x^4 −x^2 −a^2 ))dx=       =Σ_(i=1) ^4 ∫(N_i /(x−r_i ))dx=Σ_(i=1) ^4 N_i ln∣x−r_i ∣         ∫((√(x^2 +a^2 ))/(x^4 −x^2 −a^2 ))dx=            [t=(x/(√(x^2 +a^2 ))) → dx=(dt/a^2 )(√((x^2 +a^2 )^3 ))]       =(1/a^2 )∫(dt/(t^4 +(1/a^2 )t^2 −(1/a^2 )))=       =(N_5 /a^2 )(∫(dt/(t−r_5 ))−∫(dt/(t+r_5 )))+(N_6 /a^2 )∫(dt/(t^2 +r_6 ))=            [r_6 >0]       =(N_5 /a^2 )ln∣((t−r_5 )/(t+r_5 ))∣+(N_6 /(a^2 (√r_6 )))arctan (t/(√r_6 ))=       =(N_5 /a^2 )ln∣(((x/(√(x^2 +a^2 )))−r_5 )/((x/(√(x^2 +a^2 )))+r_5 ))∣+(N_6 /(a^2 (√r_6 )))arctan (x/(√(r_6 (x^2 +a^2 ))))

thisisthemethod:dxx2+x2+a2=x2x4x2a2dxx2+a2x4x2a2dxx2x4x2a2dx==4i=1Nixridx=4i=1Nilnxrix2+a2x4x2a2dx=[t=xx2+a2dx=dta2(x2+a2)3]=1a2dtt4+1a2t21a2==N5a2(dttr5dtt+r5)+N6a2dtt2+r6=[r6>0]=N5a2lntr5t+r5+N6a2r6arctantr6==N5a2lnxx2+a2r5xx2+a2+r5+N6a2r6arctanxr6(x2+a2)

Commented by MJS last updated on 20/Jun/18

r_1 =−((√2)/2)(√(1−(√(4a^2 +1))))  r_2 =−((√2)/2)(√(1+(√(4a^2 +1))))  r_3 =((√2)/2)(√(1−(√(4a^2 +1))))  r_4 =((√2)/2)(√(1+(√(4a^2 +1))))  r_5 =((√2)/(2a))(√(−1+(√(4a^2 +1))))  r_6 =((1+(√(4a^2 +1)))/(2a^2 ))  N_1 =((√(2−2(√(4a^2 +1))))/(4(√(4a^2 +1))))  N_2 =−((√(2+2(√(4a^2 +1))))/(4(√(4a^2 +1))))  N_3 =−((√(2−2(√(4a^2 +1))))/(4(√(4a^2 +1))))  N_4 =((√(2+2(√(4a^2 +1))))/(4(√(4a^2 +1))))  N_5 =((a^3 (√2))/(2(√((4a^2 +1)(−1+(√(4a^2 +1)))))))  N_6 =−(a^2 /(√(4a^2 +1)))

r1=2214a2+1r2=221+4a2+1r3=2214a2+1r4=221+4a2+1r5=22a1+4a2+1r6=1+4a2+12a2N1=224a2+144a2+1N2=2+24a2+144a2+1N3=224a2+144a2+1N4=2+24a2+144a2+1N5=a322(4a2+1)(1+4a2+1)N6=a24a2+1

Commented by math khazana by abdo last updated on 20/Jun/18

thank you sir Mjs

thankyousirMjs

Terms of Service

Privacy Policy

Contact: info@tinkutara.com