Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 21772 by j.masanja06@gmail.com last updated on 03/Oct/17

integrate  ∫2^(4x) dx

integrate24xdx

Answered by mrW1 last updated on 03/Oct/17

∫2^(4x) dx  =(1/4)∫2^(4x) d(4x)  =(1/4)∫2^t dt  with t=4x  =(1/4)∫e^(tln 2)  dt  =(1/(4ln 2))∫e^(tln 2)  d(tln 2)  =(1/(4ln 2))∫e^u  du  with u=tln 2=ln 2^t =ln 2^(4x)   =(1/(4ln 2))×e^u +C  =(1/(4ln 2))×e^(ln 2^(4x) ) +C  =(2^(4x) /(4ln 2))+C

24xdx=1424xd(4x)=142tdtwitht=4x=14etln2dt=14ln2etln2d(tln2)=14ln2euduwithu=tln2=ln2t=ln24x=14ln2×eu+C=14ln2×eln24x+C=24x4ln2+C

Answered by sma3l2996 last updated on 03/Oct/17

=∫e^(4xln2) dx=(2^(4x) /(4ln2))+C

=e4xln2dx=24x4ln2+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com