Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 20908 by j.masanja06@gmail.com last updated on 07/Sep/17

integrate with respect to x   ∫(((2x+1)/(x^2 +4x+8)))dx

integratewithrespecttox(2x+1x2+4x+8)dx

Answered by Joel577 last updated on 07/Sep/17

I = ∫ ((2x + 1)/((x + 2)^2  + 4)) dx    Let u = x + 2  →  du = dx  I = ∫ ((2u − 3)/(u^2  + 4)) du    Let u = 2tan θ  →  du = 2sec^2  θ dθ   tan θ = (u/2)  →  θ = tan^(−1) ((u/2))  I = ∫ ((4tan θ − 3)/(4(tan^2  θ + 1))) 2sec^2  θ dθ      = ∫ ((4tan θ − 3)/2) dθ = ∫ 2tan θ − (3/2) dθ     = −2ln ∣cos θ∣ − (3/2)θ + C     = −2ln ∣ (2/(√(u^2  + 4))) ∣ − (3/2)tan^(−1) ((u/2)) + C     = −2ln ∣ (2/(√((x + 2)^2  + 4))) ∣ − (3/2)tan^(−1) (((x + 2)/2)) + C

I=2x+1(x+2)2+4dxLetu=x+2du=dxI=2u3u2+4duLetu=2tanθdu=2sec2θdθtanθ=u2θ=tan1(u2)I=4tanθ34(tan2θ+1)2sec2θdθ=4tanθ32dθ=2tanθ32dθ=2lncosθ32θ+C=2ln2u2+432tan1(u2)+C=2ln2(x+2)2+432tan1(x+22)+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com