All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 20908 by j.masanja06@gmail.com last updated on 07/Sep/17
integratewithrespecttox∫(2x+1x2+4x+8)dx
Answered by Joel577 last updated on 07/Sep/17
I=∫2x+1(x+2)2+4dxLetu=x+2→du=dxI=∫2u−3u2+4duLetu=2tanθ→du=2sec2θdθtanθ=u2→θ=tan−1(u2)I=∫4tanθ−34(tan2θ+1)2sec2θdθ=∫4tanθ−32dθ=∫2tanθ−32dθ=−2ln∣cosθ∣−32θ+C=−2ln∣2u2+4∣−32tan−1(u2)+C=−2ln∣2(x+2)2+4∣−32tan−1(x+22)+C
Terms of Service
Privacy Policy
Contact: info@tinkutara.com