Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 21810 by j.masanja06@gmail.com last updated on 04/Oct/17

integrate  ∫(x^2 /(√(1−x^2 )))dx

integratex21x2dx

Answered by sma3l2996 last updated on 04/Oct/17

x=sint⇒dx=costdt=(√(1−sin^2 t))dt  dx=(√(1−x^2 ))dt⇔dt=(dx/(√(1−x^2 )))  ∫(x^2 /(√(1−x^2 )))dx=∫sin^2 (t)dt=∫((1−cos(2t))/2)dt  =(1/2)(t−(1/2)sin(2t))+C=(1/2)(t−sin(t)cos(t))+C  ∫(x^2 /(√(1−x^2 )))dx=(1/2)(sin^(−1) (x)−x(√(1−x^2 )))+C

x=sintdx=costdt=1sin2tdtdx=1x2dtdt=dx1x2x21x2dx=sin2(t)dt=1cos(2t)2dt=12(t12sin(2t))+C=12(tsin(t)cos(t))+Cx21x2dx=12(sin1(x)x1x2)+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com