All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 30775 by abdo imad last updated on 25/Feb/18
letα∈]0,π[calculate∫0π2dx2(cosα+chx).
Commented by prof Abdo imad last updated on 25/Feb/18
wehaveI=∫0π2dx2(cosα+ex+e−x2)=∫0π2dx2cosα+ex+e−xthech.ex=tI=∫1eπ212cosα+t+1tdtt=∫1eπ2dt2tcosα+t2+1=∫1eπ2dtt2+2tcosα+1=∫0eπ2dt(t+cosα)2+sin2αletusethech.t+cosα=usinα⇒u=1sinα(t+cosα)I=∫cotan(α)eπ2+cosαsinαsinαdusin2α(1+u2)=1sinα[arctanu]cotanαeπ2+cosαsinα=1sinα(arctan(eπ2+cosαsinα)−arctan(cotanα)).
Answered by sma3l2996 last updated on 25/Feb/18
A=∫0π/2dx2(cosα+chx)lett=th(x/2)⇒dt=12(1−th2(x/2))dxdx=21−t2dtch(x)=2ch2(x/2)−1=21−th2(x/2)−1=21−t2−1=1+t21−t2A=∫0th(π/4)12(cosα+1+t21−t2)×(2dt1−t2)=∫0th(π/4)dt(1−t2)cosα+1+t2=∫0th(π/4)dtt2(1−cosα)+1+cosαA=∫0th(π/4)dt(1+cosα)((1−cosα1+cosα)t2+1)let′sputu=(1−cosα1+cosα)1/2t⇒dt=(1+cosα1−cosα)duA=1(1−cosα)1/2(1+cosα)1/2∫0aduu2+1A=1(1−cos2α)1/2×[arctan(1−cosαsinαt)]0th(π/4)A=1sinαarctan(1−cosαsinαth(π/4))
Terms of Service
Privacy Policy
Contact: info@tinkutara.com