Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 30775 by abdo imad last updated on 25/Feb/18

letα ∈]0,π[  calculate ∫_0 ^(π/2)    (dx/(2(cosα +chx))) .

letα]0,π[calculate0π2dx2(cosα+chx).

Commented by prof Abdo imad last updated on 25/Feb/18

we have I = ∫_0 ^(π/2)   (dx/(2(cosα +((e^x  + e^(−x) )/2))))  = ∫_0 ^(π/2)       (dx/(2cosα +e^x  +e^(−x) ))  the ch. e^x =t  I = ∫_1 ^e^(π/2)           (1/(2cosα +t +(1/t)))(dt/t)  = ∫_1 ^e^(π/2)         (dt/(2t cosα +t^2  +1))=∫_1 ^e^(π/2)        (dt/(t^2  +2tcosα +1))  = ∫_0 ^e^(π/2)      (dt/((t +cosα)^2  +sin^2 α)) let use the ch.  t+cosα =u sinα ⇒u =(1/(sinα))(t +cosα)  I= ∫_(cotan(α)) ^((e^(π/2)  +cosα)/(sinα))          ((sinα du)/(sin^2 α(1+u^2 )))  = (1/(sinα)) [arctanu]_(cotanα) ^((e^(π/2)  +cosα)/(sinα))   =(1/(sinα))( arctan(  ((e^(π/2)  +cosα)/(sinα))) −arctan(cotanα)).

wehaveI=0π2dx2(cosα+ex+ex2)=0π2dx2cosα+ex+exthech.ex=tI=1eπ212cosα+t+1tdtt=1eπ2dt2tcosα+t2+1=1eπ2dtt2+2tcosα+1=0eπ2dt(t+cosα)2+sin2αletusethech.t+cosα=usinαu=1sinα(t+cosα)I=cotan(α)eπ2+cosαsinαsinαdusin2α(1+u2)=1sinα[arctanu]cotanαeπ2+cosαsinα=1sinα(arctan(eπ2+cosαsinα)arctan(cotanα)).

Answered by sma3l2996 last updated on 25/Feb/18

A=∫_0 ^(π/2) (dx/(2(cosα+chx)))  let  t=th(x/2)⇒dt=(1/2)(1−th^2 (x/2))dx  dx=(2/(1−t^2 ))dt  ch(x)=2ch^2 (x/2)−1=(2/(1−th^2 (x/2)))−1=(2/(1−t^2 ))−1=((1+t^2 )/(1−t^2 ))  A=∫_0 ^(th(π/4)) (1/(2(cosα+((1+t^2 )/(1−t^2 )))))×(((2dt)/(1−t^2 )))  =∫_0 ^(th(π/4)) (dt/((1−t^2 )cosα+1+t^2 ))=∫_0 ^(th(π/4)) (dt/(t^2 (1−cosα)+1+cosα))  A=∫_0 ^(th(π/4)) (dt/((1+cosα)((((1−cosα)/(1+cosα)))t^2 +1)))  let′s put  u=(((1−cosα)/(1+cosα)))^(1/2) t⇒dt=(((1+cosα)/(1−cosα)))du  A=(1/((1−cosα)^(1/2) (1+cosα)^(1/2) ))∫_0 ^a (du/(u^2 +1))  A=(1/((1−cos^2 α)^(1/2) ))×[arctan(((1−cosα)/(sinα))t)]_0 ^(th(π/4))   A=(1/(sinα))arctan(((1−cosα)/(sinα))th(π/4))

A=0π/2dx2(cosα+chx)lett=th(x/2)dt=12(1th2(x/2))dxdx=21t2dtch(x)=2ch2(x/2)1=21th2(x/2)1=21t21=1+t21t2A=0th(π/4)12(cosα+1+t21t2)×(2dt1t2)=0th(π/4)dt(1t2)cosα+1+t2=0th(π/4)dtt2(1cosα)+1+cosαA=0th(π/4)dt(1+cosα)((1cosα1+cosα)t2+1)letsputu=(1cosα1+cosα)1/2tdt=(1+cosα1cosα)duA=1(1cosα)1/2(1+cosα)1/20aduu2+1A=1(1cos2α)1/2×[arctan(1cosαsinαt)]0th(π/4)A=1sinαarctan(1cosαsinαth(π/4))

Terms of Service

Privacy Policy

Contact: info@tinkutara.com