Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 67932 by mathmax by abdo last updated on 02/Sep/19

let A(θ) = ∫_0 ^∞     (dx/((x^2 +3)(x^4 −e^(iθ) )))  with  0<θ<(π/2)  1) calculate A(θ) interms of θ  2) determine also ∫_0 ^∞    (dx/((x^2 +3)(x^4 −e^(iθ) )^2 ))

letA(θ)=0dx(x2+3)(x4eiθ)with0<θ<π21)calculateA(θ)intermsofθ2)determinealso0dx(x2+3)(x4eiθ)2

Commented by MJS last updated on 02/Sep/19

I get (1)  A(θ)=−((π(2(√3)e^(i((3θ)/4)) −3e^(i(θ/2)) −9))/(12e^(i((3θ)/4)) (e^(iθ) −9)))  can this be right?

Iget(1)A(θ)=π(23ei3θ43eiθ29)12ei3θ4(eiθ9)canthisberight?

Commented by mathmax by abdo last updated on 02/Sep/19

1) A(θ)=∫_0 ^∞   (dx/((x^2  +3)(x^4 −e^(iθ) ))) ⇒2A(θ)=∫_(−∞) ^(+∞)  (dx/((x^2  +3)(x^4 −e^(iθ) )))  let W(z) =(1/((z^2 +3)(z^4 −e^(iθ) )))  poles of W?  z^4 −e^(iθ)  =0 ⇒z^4 =e^(iθ)      let z =r e^(iα)  ⇒r=1 and 4α =θ +2kπ ⇒  α_k =((θ+2kπ)/4)  ⇒ the roots are Z_k =e^(i((θ+2kπ)/4))   and k∈[[0,3]]  Z_0 =e^((iθ)/4)     ,Z_1 =e^(i(((θ+2π)/4))) =e^(((iθ)/4)+((iπ)/2))   , Z_2 =e^(i(((θ+4π)/4))) =e^(((iθ)/4)+iπ)   Z_3   = e^(i(((θ+6π)/4)))  =e^(((iθ)/4)+i((3π)/2)) =e^(((iθ)/4)+i(2π−(π/2))) =e^(i((θ/4)−(π/2)))   Z_1 =i e^((iπ)/4)  =i{cos((π/4))+isin((π/4))}=−sin(π/4)+icos((π/4))⇒im(z_1 )>0  im(Z_0 )>0  im(Z_2 )<0  im(z_3 )<0  z^2 +3 =z^2 −(i(√3))^2  =(z−i(√3))(z+i(√3)) so the roots are +^− i(√3)  residu theorem ⇒ ∫_(−∞) ^(+∞)  W(z)dz =2iπ{Res(W,i(√3))  +Res(W,Z_0 )+Res(W,Z_1 )} we have  W(z) =(1/((z−i(√3))(z+i(√3))(z−Z_0 )(z−Z_1 )(z−Z_2 )(z−Z_3 ))) ⇒  Res(W,i(√3)) =(1/((2i(√3))((i(√3))^4 −e^(iθ) ))) =(1/((2i(√3))(9−e^(iθ) )))  Res(W,Z_0 ) =(1/((Z_0 ^2 +3)(Z_0 −Z_1 )(Z_0 −Z_2 )(Z_0 −Z_3 )))  Res(W,Z_1 ) =(1/((Z_1 ^2  +3)(Z_1 −Z_0 )(Z_1 −Z_2 )(Z_1 −Z_3 )))  rest to finich the calculus ....

1)A(θ)=0dx(x2+3)(x4eiθ)2A(θ)=+dx(x2+3)(x4eiθ)letW(z)=1(z2+3)(z4eiθ)polesofW?z4eiθ=0z4=eiθletz=reiαr=1and4α=θ+2kπαk=θ+2kπ4therootsareZk=eiθ+2kπ4andk[[0,3]]Z0=eiθ4,Z1=ei(θ+2π4)=eiθ4+iπ2,Z2=ei(θ+4π4)=eiθ4+iπZ3=ei(θ+6π4)=eiθ4+i3π2=eiθ4+i(2ππ2)=ei(θ4π2)Z1=ieiπ4=i{cos(π4)+isin(π4)}=sinπ4+icos(π4)im(z1)>0im(Z0)>0im(Z2)<0im(z3)<0z2+3=z2(i3)2=(zi3)(z+i3)sotherootsare+i3residutheorem+W(z)dz=2iπ{Res(W,i3)+Res(W,Z0)+Res(W,Z1)}wehaveW(z)=1(zi3)(z+i3)(zZ0)(zZ1)(zZ2)(zZ3)Res(W,i3)=1(2i3)((i3)4eiθ)=1(2i3)(9eiθ)Res(W,Z0)=1(Z02+3)(Z0Z1)(Z0Z2)(Z0Z3)Res(W,Z1)=1(Z12+3)(Z1Z0)(Z1Z2)(Z1Z3)resttofinichthecalculus....

Commented by mathmax by abdo last updated on 02/Sep/19

perhaps because i dont complete the calculus..

perhapsbecauseidontcompletethecalculus..

Commented by mathmax by abdo last updated on 02/Sep/19

2) we have A^′ (θ) =∫_0 ^∞    (e^(iθ) /((x^2  +3)(x^4 −e^(iθ) )^2 ))dx ⇒  ∫_0 ^∞ (dx/((x^2  +3)(x^4 −e^(iθ) )^2 )) =e^(−iθ)  A^′ (θ)  rest to calculate  A^′ (θ).

2)wehaveA(θ)=0eiθ(x2+3)(x4eiθ)2dx0dx(x2+3)(x4eiθ)2=eiθA(θ)resttocalculateA(θ).

Answered by mind is power last updated on 02/Sep/19

let f(z)=(dz/((z^2 +3)(x^4 −e^(iθ) )))  pole of f are +_− i(√3)  ,e^(i((θ+2kπ)/4))     k≤4  we shose uper[half im(z)>0  plan and  use residus theorem  Res (f.i(√3))=(1/(2i(√3) (9−e^(iθ) )))  res (f,e^(iθ) )=(1/(4e^(i3θ) (e^(2iθ) +3)))  res (f,e^(i(θ+(π/2))) )=(1/(4e^(i(3θ+((3π)/2))) (−e^(i2θ) +3)))  ∫_0 ^(+∞) (dz/((z^2 +3)(z^4 +e^(iθ) )))=(1/2)∫_(−∞) ^(+∞) f(z)dz=iπΣ_(res >0 ) f(z)  =iπ[(1/(2i(√3)(9−e^(iθ) )))+(1/(4e^(3iθ) (e^(2iθ) +3)))+(1/(−4ie^(3iθ) (3−e^(2iθ) )))]  =((iπ)/)[((−i(9−e^(−iθ) ))/(2(√3)(82−18cos(θ))))+((e^(−3iθ) (3+e^(−2iθ) ))/(4(10+6cos(2θ))))+((ie^(−i3θ) (3−e^(−2iθ) ))/(4(10−6cos(2θ)))) )  2) (df/dθ)=∫(e^(iθ) /((z^2 +3)(z^4 −e^(iθ) )^2 ))dz=e^(iθ) ∫(1/((z^2 +3)(z^4 −e^(iθ) )))dz  ⇒∫(dx/((x^2 +3)(x^4 −e^(iθ) )))=f′(θ)e^(−iθ)

letf(z)=dz(z2+3)(x4eiθ)poleoffare+i3,eiθ+2kπ4k4weshoseuper[halfim(z)>0plananduseresidustheoremRes(f.i3)=12i3(9eiθ)res(f,eiθ)=14ei3θ(e2iθ+3)res(f,ei(θ+π2))=14ei(3θ+3π2)(ei2θ+3)0+dz(z2+3)(z4+eiθ)=12+f(z)dz=iπres>0f(z)=iπ[12i3(9eiθ)+14e3iθ(e2iθ+3)+14ie3iθ(3e2iθ)]=iπ[i(9eiθ)23(8218cos(θ))+e3iθ(3+e2iθ)4(10+6cos(2θ))+iei3θ(3e2iθ)4(106cos(2θ)))2)dfdθ=eiθ(z2+3)(z4eiθ)2dz=eiθ1(z2+3)(z4eiθ)dzdx(x2+3)(x4eiθ)=f(θ)eiθ

Terms of Service

Privacy Policy

Contact: info@tinkutara.com