Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 64850 by mathmax by abdo last updated on 22/Jul/19

let A_λ  =∫_0 ^π    (dx/(λ  +cosx +sinx))    (λ ∈ R)  1) find a explicit form of A_λ   2)  find also B_λ  =∫_0 ^π   (dx/((λ +cosx +sinx)^2 ))  3) calculate ∫_0 ^π    (dx/(2+cosx +sinx))  and ∫_0 ^π   (dx/((3+cosx +sinx)^2 ))

letAλ=0πdxλ+cosx+sinx(λR)1)findaexplicitformofAλ2)findalsoBλ=0πdx(λ+cosx+sinx)23)calculate0πdx2+cosx+sinxand0πdx(3+cosx+sinx)2

Commented by mathmax by abdo last updated on 23/Jul/19

1) A_λ =∫_0 ^π   (dx/(λ +cosx +sinx))  changement tan((x/2))=t give  A_λ =∫_0 ^∞        (1/(λ +((1−t^2 )/(1+t^2 )) +((2t)/(1+t^2 )))) ((2dt)/(1+t^2 )) =∫_0 ^∞     ((2dt)/(λ+λt^2  +1−t^2  +2t))  =2∫_0 ^∞    (dt/((λ−1)t^2  +2t +1+λ))  let decompose F(t)=(1/((λ−1)t^2  +2t+1+λ))  Δ^′  =1−(λ−1)(λ+1) =1−(λ^2 −1) =2−λ^2   case 1  2−λ^2 >0 ⇒∣λ∣<(√2) ⇒t_1 =((−1+(√(2−λ^2 )))/(λ−1))     (λ≠1)  t_2 =((−1−(√(2−λ^2 )))/(λ−1)) ⇒F(t) =(1/((λ−1)(t−t_1 )(t−t_2 ))) ⇒  A_λ =(2/(λ−1))∫_0 ^∞    (1/((2(√(2−λ^2 )))/(λ−1))) ((1/(t−t_1 )) −(1/(t−t_2 )))dt =(1/(√(2−λ^2 )))∫_0 ^∞    ((1/(t−t_1 ))−(1/(t−t_2 )))dt  =(1/(2(√(2−λ^2 ))))[ln∣((t−t_1 )/(t−t_2 ))∣]_0 ^(+∞)  =(1/(2(√(2−λ^2 ))))ln∣(t_2 /t_1 )∣  A_λ =(1/(2(√(2−λ^2 ))))ln∣((1+(√(2−λ^2 )))/(1−(√(2−λ^2 ))))∣

1)Aλ=0πdxλ+cosx+sinxchangementtan(x2)=tgiveAλ=01λ+1t21+t2+2t1+t22dt1+t2=02dtλ+λt2+1t2+2t=20dt(λ1)t2+2t+1+λletdecomposeF(t)=1(λ1)t2+2t+1+λΔ=1(λ1)(λ+1)=1(λ21)=2λ2case12λ2>0⇒∣λ∣<2t1=1+2λ2λ1(λ1)t2=12λ2λ1F(t)=1(λ1)(tt1)(tt2)Aλ=2λ10122λ2λ1(1tt11tt2)dt=12λ20(1tt11tt2)dt=122λ2[lntt1tt2]0+=122λ2lnt2t1Aλ=122λ2ln1+2λ212λ2

Commented by mathmax by abdo last updated on 23/Jul/19

case 2  2−λ^2 <0 ⇒∣λ∣>(√2) ⇒Δ^′ <0 and  (λ−1)t^2  +2t +1+λ =(λ−1){t^2  +(2/(λ−1))t  +((1+λ)/(λ−1))}  =(λ−1){ t^2  +((2t)/(λ−1)) +(1/((λ−1)^2 )) +((1+λ)/(λ−1)) −(1/((λ−1)^2 ))}  =(λ−1){ (t +(1/(λ−1)))^2  +((λ^2 −2)/((λ−1)^2 ))} we use the changement   t+(1/(λ−1)) =((√(λ^2 −2))/(∣λ−1∣)) u ⇒A_λ =(2/(λ−1))∫_0 ^∞   (dt/((t+(1/(λ−1)))^2  +((λ^2 −2)/((λ−1)^2 ))))  =(2/(λ−1))∫_((s(λ))/(√(λ^2 −2))) ^(+∞)        (1/(((λ^2 −2)/((λ−1)^2 ))(1+u^2 )))((√(λ^2 −2))/(∣λ−1∣)) du  =((2(λ−1)^2 )/((λ−1)∣λ−1∣)) (√(λ^2 −2))  [arctanu]_((s(λ))/(√(λ^2 −2))) ^(+∞)   A_λ =2s(λ−1)(√(λ^2 −2))  ((π/2) −arctan(((s(λ))/(√(λ^2 −2)))))  with s(x) =1 if x>0 and s(x)=−1 if x<0

case22λ2<0⇒∣λ∣>2Δ<0and(λ1)t2+2t+1+λ=(λ1){t2+2λ1t+1+λλ1}=(λ1){t2+2tλ1+1(λ1)2+1+λλ11(λ1)2}=(λ1){(t+1λ1)2+λ22(λ1)2}weusethechangementt+1λ1=λ22λ1uAλ=2λ10dt(t+1λ1)2+λ22(λ1)2=2λ1s(λ)λ22+1λ22(λ1)2(1+u2)λ22λ1du=2(λ1)2(λ1)λ1λ22[arctanu]s(λ)λ22+Aλ=2s(λ1)λ22(π2arctan(s(λ)λ22))withs(x)=1ifx>0ands(x)=1ifx<0

Commented by mathmax by abdo last updated on 23/Jul/19

2) we have (dA_λ /dλ) =−∫_0 ^π    (dx/((λ +cosx +sinx)^2 )) =−B_λ  ⇒  B_λ  =−A_λ ^′       rest to calculate A_λ ^′ ....

2)wehavedAλdλ=0πdx(λ+cosx+sinx)2=BλBλ=AλresttocalculateAλ....

Commented by mathmax by abdo last updated on 23/Jul/19

3) let calculate ∫_0 ^π    (dx/(2+cosx +sinx))   here λ =2  and  2−λ^2 =−2<0  ⇒∫_0 ^π   (dx/(2+cosx +sinx)) =A_2   =2s(1)(√(2^2 −2)){ (π/2) −arctan(((s(2))/(√(2^2 −2))))}  =2(√2){(π/2) −arctan((1/(√2)))} =π(√2) −2(√2)((π/2) −arctan((√2)))  =π(√2)−π(√2) +2(√2)arctan((√2)) ⇒  ∫_0 ^π   (dx/(2+cosx +sinx)) =2(√2)arctan((√2)) .

3)letcalculate0πdx2+cosx+sinxhereλ=2and2λ2=2<00πdx2+cosx+sinx=A2=2s(1)222{π2arctan(s(2)222)}=22{π2arctan(12)}=π222(π2arctan(2))=π2π2+22arctan(2)0πdx2+cosx+sinx=22arctan(2).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com