Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 40158 by maxmathsup by imad last updated on 16/Jul/18

let  A_n = ∫_0 ^1    ((x^(2n+1)  ln(x))/(x^2  −1))dx  1) justify the existence of A_n   2)calculate A_(n+1)  −A_n   3) prove that  x∈]0,1[ ⇒0<((xln(x))/(x^2  −1))<(1/2)    4) find lim_(n→+∞) A_n

letAn=01x2n+1ln(x)x21dx1)justifytheexistenceofAn2)calculateAn+1An3)provethatx]0,1[0<xln(x)x21<124)findlimn+An

Commented by math khazana by abdo last updated on 19/Jul/18

1) lim_(x→0^+ )    ((x^(2n+1) ln(x))/(x^2 −1)) =−lim_(x→0^+ )    x^(2n+1) ln(x)=0  also lim_(x→1) =lim_(x→1)   (x^(2n+1) /(x+1)) ((lnx)/(x−1)) =(1/2)  because lim_(x→1)   ((ln(x))/(x−1)) =1  ⇒ A_n   exist  2) A_(n+1)  −A_n = ∫_0 ^1   ((x^(2n+3)  ln(x))/(x^2  −1))dx−∫_0 ^1  ((x^(2n+1)  ln(x))/(x^2  −1))dx  = ∫_0 ^1   ((x^(2n+1) (x^2 −1)ln(x))/(x^2  −1))dx  = ∫_0 ^1   x^(2n+1)  ln(x)dx   =[ (1/(2n+2)) x^(2n+2) lnx]_0 ^1   −∫_0 ^1   (1/(2n+2))x^(2n+2)  (dx/x)  =− (1/(2n+2))∫_0 ^1    x^(2n) dx =−(1/((2n+1)(2n+2)))

1)limx0+x2n+1ln(x)x21=limx0+x2n+1ln(x)=0alsolimx1=limx1x2n+1x+1lnxx1=12becauselimx1ln(x)x1=1Anexist2)An+1An=01x2n+3ln(x)x21dx01x2n+1ln(x)x21dx=01x2n+1(x21)ln(x)x21dx=01x2n+1ln(x)dx=[12n+2x2n+2lnx]010112n+2x2n+2dxx=12n+201x2ndx=1(2n+1)(2n+2)

Commented by math khazana by abdo last updated on 19/Jul/18

3) we have 0<x<1  ⇒ xln(x)<0 and x^2  −1<0 ⇒  0< ((xln(x))/(x^2 −1)) let prove that  ((xln(x))/(x^2  −1))<(1/2) let  w(x)=(1/2) −((xln(x))/(x^2 −1)) with 0<x<1  w^′ (x)=−(((lnx+1)(x^2 −1)−xln(x)(2x))/((x^2 −1)^2 ))  =−(((x^2 −1)ln(x) +x^2  −1 −2x^2 ln(x))/((x^2  −1)^2 ))  =−((−(x^2  +1)ln(x) +x^2 −1)/((x^2 −1)^2 )) =((−x^2  +1 +(x^2  +1)ln(x))/((x^(2 ) −1)^2 ))  = ((x^2 (ln(x)−1) +ln(x)+1)/((x^2  −1)^2 ))  any way we have  lim_(x→0^+ )    w(x)=(1/2)>0  lim_(x→1)   w(x)= (1/2)>0 still to prove that w dont  change the sign...

3)wehave0<x<1xln(x)<0andx21<00<xln(x)x21letprovethatxln(x)x21<12letw(x)=12xln(x)x21with0<x<1w(x)=(lnx+1)(x21)xln(x)(2x)(x21)2=(x21)ln(x)+x212x2ln(x)(x21)2=(x2+1)ln(x)+x21(x21)2=x2+1+(x2+1)ln(x)(x21)2=x2(ln(x)1)+ln(x)+1(x21)2anywaywehavelimx0+w(x)=12>0limx1w(x)=12>0stilltoprovethatwdontchangethesign...

Commented by math khazana by abdo last updated on 19/Jul/18

4) 0< x^(2n)   ((xln(x))/(x^2 −1))< (x^(2n) /2) ⇒  0< ∫_0 ^1    ((x^(2n+1) ln(x))/(x^2  −1))dx< ∫_0 ^1   (x^(2n) /2)dx ⇒  0< A_n <  (1/(2(2n+1))) →0(n→+∞) so  lim_(n→+∞)  A_n =0

4)0<x2nxln(x)x21<x2n20<01x2n+1ln(x)x21dx<01x2n2dx0<An<12(2n+1)0(n+)solimn+An=0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com